Advertisement

Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply

  • Chuanrun Miao
  • Feng Liu
  • Qian Wang
  • Meiling Cai
  • Zhi Fang
Regular Article
  • 68 Downloads

Abstract

In this paper, an oscillating microsecond pulsed power supply with rise time of several tens of nanosecond (ns) is used to excite a coaxial DBD with double layer dielectric barriers. The effects of various electrode geometries by changing the size of inner quartz tube (different electrode gaps) on the discharge uniformity, power deposition, energy efficiency, and operation temperature are investigated by electrical, optical, and temperature diagnostics. The electrical parameters of the coaxial DBD are obtained from the measured applied voltage and current using an equivalent electrical model. The energy efficiency and the power deposition in air gap of coaxial DBD with various electrode geometries are also obtained with the obtained electrical parameters, and the heat loss and operation temperature are analyzed by a heat conduction model. It is found that at the same applied voltage, with the increasing of the air gap, the discharge uniformity becomes worse and the discharge power deposition and the energy efficiency decrease. At 2.5 mm air gap and 24 kV applied voltage, the energy efficiency of the coaxial DBD reaches the maximum value of 68.4%, and the power deposition in air gap is 23.6 W and the discharge uniformity is the best at this case. The corresponding operation temperature of the coaxial DBD reaches 64.3 °C after 900 s operation and the temperature of the inner dielectric barrier is 114.4 °C under thermal balance. The experimental results provide important experimental references and are important to optimize the design and the performance of coaxial DBD reactor.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    G.M. Huang, Y.J. Zhou, T. Wang, I.V. Timoshkin, M.P. Wilson, S.J. MacGregor, M.J. Given, IEEE Trans. Plasma Sci. 44, 2111 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    J.L. Lopez, G. Vezzu, A. Freilich, B. Paolini, Eur. Phys. J. D 67, 1 (2013) CrossRefGoogle Scholar
  3. 3.
    Z. Ye, J. Zhao, H. Huang, F. Ma, R. Zhang, J. Hazard. Mater. 260, 32 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    J. Li, K.F. Shang, Y. Wu, N.H. Wang, Y. Zhang, J. Electrostat. 65, 228 (2007) CrossRefGoogle Scholar
  5. 5.
    M. Schmidt, M. Hołub, I. Jõgi, M. Sikk, Eur. Phys. J. Appl. Phys. 75, 24708 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    H. Yavuz, G. Grégory, J. Bai, Thin Solid Films 616, 220 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    G.Z. Qu, J. Li, D.L. Liang, D.L. Huang, D. Qu, Y.M. Huang, J. Electrostat. 71, 689 (2013) CrossRefGoogle Scholar
  8. 8.
    T.H. Chandrashekaraiah, R. Bogdanowicz, V. Danilov, J. Schäfer, J. Meichsner, R. Hippler, Eur. Phys. J. D 69, 1 (2015) CrossRefGoogle Scholar
  9. 9.
    R.X. Wang, W.Y. Li, C. Zhang, C.Y. Ren, K. Ostrikov, T. Shao, Plasma Process. Polym. 14, e1600248 (2017) CrossRefGoogle Scholar
  10. 10.
    F. Thevenet, L. Sivachandiran, O. Guaitella, C. Barakat, A. Rousseau, J. Phys. D: Appl. Phys. 47, 224011 (2014) ADSCrossRefGoogle Scholar
  11. 11.
    P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, M. Arai, Renew. Sustain. Energy Rev. 40, 886 (2014) CrossRefGoogle Scholar
  12. 12.
    H. Zhang, D Ma, R. Qiu, Y. Tang, C. Du, Chem. Eng. J. 313, 157 (2017) CrossRefGoogle Scholar
  13. 13.
    S. Ma, Y. Zhao, J. Yang, S. Zhang, J. Zhang, C. Zheng, Renew. Sustain. Energy Rev. 67, 791 (2017) CrossRefGoogle Scholar
  14. 14.
    J.M. Williamson, D.D. Trump, P. Bletzinger, B.N. Ganguly, J. Phys. D: Appl. Phys. 39, 4400 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    A. Ozkan, A. Bogaerts, F. Reniers, J. Phys. D: Appl. Phys. 50, 084004 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    F. Fukawa, M. Taguchi, S. Suzuki, H. Itoh, IEEJ Trans. Fundam. Mater. 133, 471 (2013) CrossRefGoogle Scholar
  17. 17.
    H. Höft, T. Huiskamp, M. Kettlitz, A.J.M. Pemen, IEEE Trans. Plasma Sci. 42, 2336 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    A.V. Pipa, J. Koskulics, R. Brandenburg, T. Hoder, Rev. Sci. Instrum. 83, 115112 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    T. Shao, C. Zhang, Y. Yu, Z. Niu, H. Jiang, J.Y. Xu, W.F. Li, P. Yan, Y.X. Zhou, Vacuum 86, 876 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    S. Zhang, L. Jia, W.C. Wang, D.Z. Yang, K. Tang, Z.J. Liu, Spectrochim. Acta A 117, 535 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    T. Shao, K.H. Long, C. Zhang, J. Wang, D.D. Zhang, P. Yan, S.C. Zhang, J. Electrostat. 67, 215 (2009) CrossRefGoogle Scholar
  22. 22.
    D.Z. Yang, W.C. Wang, S. Zhang, K. Tang, Z.J. Liu, S. Wang, Appl. Phys. Lett. 102, 161501 (2013) Google Scholar
  23. 23.
    O. Karatum, M.A. Deshusses, Chem. Eng. J. 294, 308 (2016) CrossRefGoogle Scholar
  24. 24.
    D.B. Nguyen, W.G. Lee, J. Ind. Eng. Chem. 20, 972 (2014) CrossRefGoogle Scholar
  25. 25.
    M. Taguchi, IEEJ Trans. Fundam. Mater. 134, 279 (2014) CrossRefGoogle Scholar
  26. 26.
    U. Kogelschatz, Plasma Phys. Control. Fusion 46, B63 (2004) CrossRefGoogle Scholar
  27. 27.
    U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003) CrossRefGoogle Scholar
  28. 28.
    P.C. Jiang, W.C. Wang, S. Zhang, J. Li, D.Z. Yang, K. Tang, Z.J. Liu, Spectrochim. Acta A 122, 107 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    W.J. Liang, H.P. Fang, J. Li, F. Zheng, J.X. Li, Y.Q. Jin, J. Electrostat. 69, 206 (2011) CrossRefGoogle Scholar
  30. 30.
    X.B. Zhu, X. Gao, R. Qin, Y.X. Zeng, R.Y. Qu, C.H. Zheng, X. Tu, Appl. Catal. B Environ. 170–171, 293 (2015) CrossRefGoogle Scholar
  31. 31.
    B.J. Dou, B. Feng, C. Wang, Q.Z. Jia, J. Li, J. Electrostat. 71, 939 (2013) CrossRefGoogle Scholar
  32. 32.
    H.B. Zhang, K. Li, C.H. Shu, Z.Y. Lou, T.H. Sun, J.P. Jia, Chem. Eng. J. 256, 107 (2014) CrossRefGoogle Scholar
  33. 33.
    Z. Fang, Y.C. Qiu, Y.Z. Sun, K. Edmund, J. Electrostat. 66, 421 (2008) CrossRefGoogle Scholar
  34. 34.
    T. Wang, B.M. Sun, H.P. Xiao, J.Y. Zeng, E.P. Duan, J. Xin, C. Li, Plasma Chem. Plasma Process. 32, 1189 (2012) CrossRefGoogle Scholar
  35. 35.
    S.J. Anaghizi, P. Talebizadeh, H. Rahimzadeh, H. Ghomi, IEEE Trans. Plasma Sci. 43, 1944 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    X. Tu, H.J. Gallon, M.V. Twigg, P.A. Gorry, J.C. Whitehead, J. Phys. D: Appl. Phys. 44, 274007 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    T. Shao, K.H. Long, C. Zhang, P. Yan, S.C. Zhang, R.Z. Pan, J. Phys. D: Appl. Phys. 41, 215203 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    S. Liu, M. Neiger, J. Phys. D: Appl. Phys. 36, 3144 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    C. Zhang, T. Shao, H. Ma, D.D. Zhang, C.Y. Ren, P. Yan, V.F. Tarasenko, E. Schamiloglu, IEEE Trans. Dielectr. Electr. Insul. 20, 1304 (2013) CrossRefGoogle Scholar
  40. 40.
    A.V. Pipa, T. Hoder, J. Koskulics, M. Schmidt, Rev. Sci. Instrum. 83, 075111 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    F. Liu, G. Huang, B. Ganguly, Plasma Sources Sci. Technol. 19, 045017 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    J. Ráhel, Z. Szalay, J. C̀ech, T. Morávek, Eur. Phys. J. D 70, 92 (2016). ADSCrossRefGoogle Scholar
  43. 43.
    H. Sadat, N. Dubus, V.L. Dez, J.M. Tatibouët, J. Barrault, J. Electrostat. 68, 27 (2010) CrossRefGoogle Scholar
  44. 44.
    H. Sadat, N. Dubus, L. Pinard, J.M. Tatibouët, J. Barrault, Appl. Therm. Eng. 29, 1259 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chuanrun Miao
    • 1
  • Feng Liu
    • 1
  • Qian Wang
    • 1
  • Meiling Cai
    • 1
  • Zhi Fang
    • 1
  1. 1.College of Electrical Engineering and Control Science, Nanjing Tech TechnologyNanjingP.R. China

Personalised recommendations