Skip to main content
Log in

Floquet calculations for H2+ photoionization

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present results of calculations of rates for ionization of the lowest electronic state of the H2+ ion by a continuous-wave laser field. We solve the coupled-channel Floquet equations in both length and velocity gauges using a pseudospectral method. We employ a complex absorbing potential to obtain Siegert-type solutions resulting in resonance positions and widths. We calculate generalized cross sections for one-, two-, and three-photon ionizations for various internuclear separations of the ion with intensity of I = 1.76 × 1012 W/cm2. This is the first time the Floquet technique combined with the complex absorbing potential has been employed for photoionization cross sections of the ion. We report on ionization rates of the ion for different internuclear distances with intensity of I = 5 × 1013 W/cm2. We also present two-photon ionization cross section for different internuclear distances with intensities of I = 1.76 × 1013 and 1.76 × 1014 W/cm2. We compare our findings from calculations carried out in both gauges with those of previous calculations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Hylleraas, Z. Phys. 71, 739 (1931)

    Article  ADS  Google Scholar 

  2. G. Jaffé, Z. Phys. 87, 535 (1934)

    Article  ADS  Google Scholar 

  3. W.G. Baber, H.R. Hassé, Proc. Camb. Philos. Soc. 31, 564 (1935)

    Article  ADS  Google Scholar 

  4. K. Codling, L.J. Fransinski, J. Phys. B 26, 783 (1993)

    Article  ADS  Google Scholar 

  5. A. Giusti-Suzor et al., J. Phys. B 28, 309 (1995)

    Article  ADS  Google Scholar 

  6. T.D.G. Walsh, L. Strach, S.L. Chin, J. Phys. B 31, 4853 (1998)

    Article  ADS  Google Scholar 

  7. R.M. Potvliege, R. Shakeshaft, Phys. Rev. A 40, 3061 (1989)

    Article  ADS  Google Scholar 

  8. S.-I. Chu, Adv. Chem. Phys. 73, 739 (1989)

    Google Scholar 

  9. I. Ben-Itzhak et al., Phys. Rev. A 78, 063419 (2008)

    Article  ADS  Google Scholar 

  10. G.N. Gibson, M. Li, C. Guo, J. Neira, Phys. Rev. Lett. 79, 2022 (1997)

    Article  ADS  Google Scholar 

  11. J.H. Posthumus et al., J. Phys. B 28, L349 (1995)

    Article  Google Scholar 

  12. T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, R2511 (1995)

    Article  ADS  Google Scholar 

  13. M. Plummer, J.F. McCann, J. Phys. B 29, 4625 (1996)

    Article  ADS  Google Scholar 

  14. Z. Mulyukov, M. Pont, R. Shakeshaft, Phys. Rev. A 54, 4299 (1996)

    Article  ADS  Google Scholar 

  15. L.B. Madsen, M. Plummer, J. Phys. B 31, 87 (1997)

    Article  Google Scholar 

  16. X. Chu, S.-I. Chu, Phys. Rev. A 63, 013414 (2000)

    Article  ADS  Google Scholar 

  17. A.D. Bandrauk, H.Z. Lu, Phys. Rev. A 62, 053406 (2000)

    Article  ADS  Google Scholar 

  18. L.-Y. Peng et al., J. Chem. Phys. 120, 10046 (2004)

    Article  ADS  Google Scholar 

  19. Ts. Tsogbayar, M. Horbatsch, J. Phys. B 46, 085004 (2013)

    Article  ADS  Google Scholar 

  20. Ts. Tsogbayar, M. Horbatsch, J. Phys. B 46, 245005 (2013)

    Article  ADS  Google Scholar 

  21. D.R. Bates, U. Öpik, J. Phys. B 1, 543 (1968)

    Article  ADS  Google Scholar 

  22. J.A. Richards, F.P. Larkins, J. Phys. B 19, 1945 1986

    Google Scholar 

  23. M. Plummer, J.F. McCann, J. Phys. B 28, 4073 (1995)

    Article  ADS  Google Scholar 

  24. M. Baik, M. Pont, R. Shakeshaft, Phys. Rev. A 54, 1570 (1996)

    Article  ADS  Google Scholar 

  25. A. Apalategui, A. Saenz, P. Lambropoulos, J. Phys. B 33, 2791 (2000)

    Article  ADS  Google Scholar 

  26. H. Bachau, J. Phys. B 35, 509 (2002)

    Article  ADS  Google Scholar 

  27. S. Barmaki, S. Laulan, Can. J. Phys. 88, 1 (2010)

    Article  ADS  Google Scholar 

  28. J. Colgan, M.S. Pindzola, F. Robicheaux, Phys. Rev. A 68, 063413 (2003)

    Article  ADS  Google Scholar 

  29. L. Tao, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 79, 012719 (2009)

    Article  ADS  Google Scholar 

  30. L. Tao, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 80, 013402 (2009)

    Article  ADS  Google Scholar 

  31. X. Guan, E.B. Secor, K. Bartschat, B.I. Schneider, Phys. Rev. A 84, 033420 (2011)

    Article  ADS  Google Scholar 

  32. X. Hou, L. Peng, Q.-Ch. Ning, Q. Gong, J. Phys. B 45, 074019 (2012)

    Article  ADS  Google Scholar 

  33. X. Bian, Phys. Rev. A 90, 033403 (2014)

    Article  ADS  Google Scholar 

  34. H.D. Cohen, U. Fano, Phys. Rev. 150, 30 (1966)

    Article  ADS  Google Scholar 

  35. M. Brosolo, P. Decleva, A. Lisini, J. Phys. B 25, 3345 (1992)

    Article  ADS  Google Scholar 

  36. M. Brosolo, P. Decleva, A. Lisini, Chem. Phys. 181, 85 (1994)

    Article  ADS  Google Scholar 

  37. O.A. Fojón, A. Palacios, J. Fernández, R.D. Rivarola, F. Martin, Phys. Lett. A 350, 371 (2006)

    Article  ADS  Google Scholar 

  38. S.I. Chu, W.P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1977)

    Article  ADS  Google Scholar 

  39. S.I. Chu, J. Chem. Phys. 75, 2215 (1981)

    Article  ADS  Google Scholar 

  40. S.I. Chu, J. Chem. Phys. 94, 7901 (1991)

    Article  ADS  Google Scholar 

  41. D.A. Telnov, J.Y. Wang, S.I. Chu, Phys. Rev. A 52, 3988 (1995)

    Article  ADS  Google Scholar 

  42. D.A. Telnov, S.I. Chu, Chem. Phys. Lett. 255, 223 (1996)

    Article  ADS  Google Scholar 

  43. X. Chu, S.I. Chu, Phys. Rev. A 63, 023411 (2001)

    Article  ADS  Google Scholar 

  44. S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  45. Ts. Tsogbayar, M. Horbatsch, J. Phys. B 47, 115003 (2014)

    Article  ADS  Google Scholar 

  46. F.H. Meis, A. Giusti-Suzor, K.C. Kulander, K.J. Schafer, in Super-intense laser-atom physics, edited by B. Piraux. (Plenum Press, New York, 1993)

  47. G. Floquet, Ann. Ec. Norm. Suppl. 12, 47 (1883)

    Google Scholar 

  48. H. Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  49. D. Funaro, Polynomial approximation of differential equations (Springer-Verlag, Berlin Heidelberg, 1992)

  50. J.S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral methods for time-dependent problems (Cambridge University Press, Cambridge UK, 2007)

  51. U.V. Riss, H.-D. Meyer, J. Phys. B 26, 4503 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Lefebvre, M. Sindelka, N. Moiseyev, Phys. Rev. A 72, 052704 (2005)

    Article  ADS  Google Scholar 

  53. R. Santra, Phys. Rev. A 74, 034701 (2006)

    Article  ADS  Google Scholar 

  54. E. Ackad, M. Horbatsch, Phys. Rev. A 76, 022503 (2007)

    Article  ADS  Google Scholar 

  55. P. Lambropoulos, Adv. At. Mol. Phys. 12, 87 (1976)

    Article  ADS  Google Scholar 

  56. C. Laughlin, S.-I. Chu, Phys. Rev. A 48, 4654 (1993)

    Article  ADS  Google Scholar 

  57. Ts. Tsogbayar, J. Phys. B 42, 165007 (2009)

    Article  ADS  Google Scholar 

  58. T.E. Sharp, At. Data 2, 119 (1971)

    Article  ADS  Google Scholar 

  59. L.B. Madsen, M. Plummer, J. F. McCann, Phys. Rev. A 58, 456 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsogbayar Tsednee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsednee, T., Yeager, D.L. Floquet calculations for H2+ photoionization. Eur. Phys. J. D 72, 56 (2018). https://doi.org/10.1140/epjd/e2018-80360-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80360-4

Keywords

Navigation