Advertisement

Multipole effects in the photoionization processes of Mg isoelectronic series with Z = 12–22

  • Long Jiang
  • Gang Jiang
  • Hsin-Chang Chi
  • Keh-Ning Huang
Regular Article

Abstract

In this paper, we calculate relativistic photoionization parameters for Mg and Mg-like ions for photon energies between 10 eV and 30 keV using Dirac–Fock initial discrete-state wave functions and final central-field continuum wave functions. By taking multipole contributions into account, we achieve results that are in good agreement with both experimental data and theoretical results for neutral Mg atoms, and are within 5% of the experimental data for photon energies above 1 keV. We also find that, in relativistic photoionization calculations, the magnetic quadrupole transition tends to be more important than the magnetic dipole transition. The effect of multipoles is studied in detail by considering the contribution of the electric dipole transition to the full multipole calculation.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    P.C. Deshmukh, S.T. Manson, Phys. Rev. A 28, 209 (1983) ADSCrossRefGoogle Scholar
  2. 2.
    H.C. Chi, K.-N. Huang, Phys. Rev. A 50, 392 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    B. Kammerling, A. Hausmann, J. Lauger, V. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 25, 4773 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    T.N. Chang, X. Tang, Phys. Rev. A 46, 2209 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    J.-T. Hsiao, K.-N. Huang, Comput. Phys. Commun. 182, 136 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    R.H. Pratt, A. Ron, H.K. Tseng, Rev. Mod. Phys. 45, 273 (1973) ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Sienkiewicz, J. Phys. B: At. Mol. Opt. Phys. 30, 1261 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    W.F. Perger, J. Phys. B: At. Mol. Opt. Phys. 24, 4863 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    K.-N. Huang, Phys. Rev. A 22, 223 (1980) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K.-N. Huang, W.R. Johnson, Phys. Rev. A. 25, 634 (1982) ADSCrossRefGoogle Scholar
  11. 11.
    B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 183 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Scofield, Lawrence Livermore National Laboratory Report UCRL-51326 (1973) Google Scholar
  13. 13.
    I.M. Band, Y.I. Kharitonov, M.B. Trzhaskovskaya, At. Data Nucl. Data Tables 23, 443 (1979) ADSCrossRefGoogle Scholar
  14. 14.
    J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985) ADSCrossRefGoogle Scholar
  15. 15.
    M.Y. Amusia, N.B. Avdonina, E.G. Drukarev, S.T. Manson, R.H. Pratt, Phys. Rev. Lett. 85, 4703 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    A. Ron, I.B. Goldberg, J. Stein, Phys. Rev. A 50, 1312 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986) Google Scholar
  18. 18.
    R. Garstang, J. Phys. Colloques 31, 189 (1970) CrossRefGoogle Scholar
  19. 19.
    Ph.V. Demekhin, J. Phys. B: At. Mol. Opt. Phys. 47, 025602 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Long Jiang
    • 1
  • Gang Jiang
    • 2
  • Hsin-Chang Chi
    • 3
  • Keh-Ning Huang
    • 2
  1. 1.College of Physical Science and Technology, Sichuan UniversityChengduP.R. China
  2. 2.Institute of Atomic and Molecular Physics, Sichuan UniversityChengduP.R. China
  3. 3.Department of PhysicsDong Hwa UniversityHualienP.R. China

Personalised recommendations