Skip to main content
Log in

Multipole effects in the photoionization processes of Mg isoelectronic series with Z = 12–22

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we calculate relativistic photoionization parameters for Mg and Mg-like ions for photon energies between 10 eV and 30 keV using Dirac–Fock initial discrete-state wave functions and final central-field continuum wave functions. By taking multipole contributions into account, we achieve results that are in good agreement with both experimental data and theoretical results for neutral Mg atoms, and are within 5% of the experimental data for photon energies above 1 keV. We also find that, in relativistic photoionization calculations, the magnetic quadrupole transition tends to be more important than the magnetic dipole transition. The effect of multipoles is studied in detail by considering the contribution of the electric dipole transition to the full multipole calculation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Deshmukh, S.T. Manson, Phys. Rev. A 28, 209 (1983)

    Article  ADS  Google Scholar 

  2. H.C. Chi, K.-N. Huang, Phys. Rev. A 50, 392 (1994)

    Article  ADS  Google Scholar 

  3. B. Kammerling, A. Hausmann, J. Lauger, V. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 25, 4773 (1992)

    Article  ADS  Google Scholar 

  4. T.N. Chang, X. Tang, Phys. Rev. A 46, 2209 (1992)

    Article  ADS  Google Scholar 

  5. J.-T. Hsiao, K.-N. Huang, Comput. Phys. Commun. 182, 136 (2011)

    Article  ADS  Google Scholar 

  6. R.H. Pratt, A. Ron, H.K. Tseng, Rev. Mod. Phys. 45, 273 (1973)

    Article  ADS  Google Scholar 

  7. J.E. Sienkiewicz, J. Phys. B: At. Mol. Opt. Phys. 30, 1261 (1997)

    Article  ADS  Google Scholar 

  8. W.F. Perger, J. Phys. B: At. Mol. Opt. Phys. 24, 4863 (1991)

    Article  ADS  Google Scholar 

  9. K.-N. Huang, Phys. Rev. A 22, 223 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. K.-N. Huang, W.R. Johnson, Phys. Rev. A. 25, 634 (1982)

    Article  ADS  Google Scholar 

  11. B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 183 (1993)

    Article  ADS  Google Scholar 

  12. J.H. Scofield, Lawrence Livermore National Laboratory Report UCRL-51326 (1973)

  13. I.M. Band, Y.I. Kharitonov, M.B. Trzhaskovskaya, At. Data Nucl. Data Tables 23, 443 (1979)

    Article  ADS  Google Scholar 

  14. J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)

    Article  ADS  Google Scholar 

  15. M.Y. Amusia, N.B. Avdonina, E.G. Drukarev, S.T. Manson, R.H. Pratt, Phys. Rev. Lett. 85, 4703 (2000)

    Article  ADS  Google Scholar 

  16. A. Ron, I.B. Goldberg, J. Stein, Phys. Rev. A 50, 1312 (1994)

    Article  ADS  Google Scholar 

  17. A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)

  18. R. Garstang, J. Phys. Colloques 31, 189 (1970)

    Article  Google Scholar 

  19. Ph.V. Demekhin, J. Phys. B: At. Mol. Opt. Phys. 47, 025602 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Jiang, G., Chi, HC. et al. Multipole effects in the photoionization processes of Mg isoelectronic series with Z = 12–22. Eur. Phys. J. D 72, 23 (2018). https://doi.org/10.1140/epjd/e2017-80652-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80652-1

Keywords

Navigation