Adjustable vector Airy light-sheet single optical tweezers: negative radiation forces on a subwavelength spheroid and spin torque reversal

Regular Article
  • 29 Downloads

Abstract

Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell’s equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    F.G. Mitri, Appl. Phys. Lett. 110, 091104 (2017) ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    A.E. Minovich, A.E. Klein, D.N. Neshev, T. Pertsch, Y.S. Kivshar, D.N. Christodoulides, Laser Photonics Rev. 8, 221 (2014) CrossRefGoogle Scholar
  4. 4.
    J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Opt. Express 16, 12880 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    J. Baumgartl, M. Mazilu, K. Dholakia, Nat. Photonics 2, 675 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    A. Salandrino, D.N. Christodoulides, Opt. Lett. 35, 2082 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    T. Vettenburg, H.I.C. Dalgarno, J. Nylk, C. Coll-Llado, D.E.K. Ferrier, T. Cizmar, F.J. Gunn-Moore, K. Dholakia, Nat. Methods 11, 541 (2014) CrossRefGoogle Scholar
  8. 8.
    N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, A. Arie, Nature 494, 331 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    D.N. Christodoulides, Nat. Photonics 2, 652 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Ziyu, Z. Weiping, T. Jianguo, J. Opt. 18, 025607 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    K.-Y. Kim, S. Kim, Opt. Lett. 41, 135 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    F.G. Mitri, Appl. Phys. Lett. 110, 181112 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Block, Optical tweezers: a new tool for biophysics, in Noninvasive techniques in cell biology (Wiley-Liss, New York, 1990), Chapter 15 Google Scholar
  14. 14.
    S.M. Block, Nature 360, 493 (1992) ADSCrossRefGoogle Scholar
  15. 15.
    D. McGloin, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 364, 3521 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    T.A. Nieminen, N. du Preez-Wilkinson, A.B. Stilgoe, V.L.Y. Loke, A.A.M. Bui, H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transf. 146, 59 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    T.A. Nieminen, N. du Preez-Wilkinson, A.B. Stilgoe, V.L.Y. Loke, A.A.M. Bui, H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transf. 146, 59 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 24, 430 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    F. Xu, K. Ren, G. Gouesbet, X. Cai, G. Gréhan, Phys. Rev. E 75, 026613 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    F. Xu, J.A. Lock, G. Gouesbet, C. Tropea, Phys. Rev. A 78, 013843 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    O. Brzobohatý, A.V. Arzola, M. Šiler, L. Chvátal, P. Jákl, S. Simpson, P. Zemánek, Opt. Express 23, 7273 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Cao, W. Song, W. Ding, F. Sun, T. Zhu, Opt. Express 22, 18113 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    A. Hinojosa-Alvarado, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. B 27, 1651 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    H. Sosa-Martínez, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. B 26, 2109 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    F.G. Mitri, J. Opt. Soc. Am. B 34, 899 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    F.G. Mitri, J. Quant. Spectrosc. Radiat. Transf. 196, 201 (2017) ADSCrossRefGoogle Scholar
  27. 27.
    F.G. Mitri, J. Opt. Soc. Am. A 34, 1246 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    F.G. Mitri, J. Opt. Soc. Am. B 34, 2169 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    B.T. Draine, Astrophys. J. 333, 848 (1988) ADSCrossRefGoogle Scholar
  30. 30.
    G.C. Sherman, J. Opt. Soc. Am. 57, 546 (1967) CrossRefGoogle Scholar
  31. 31.
    J.W. Goodman, Introduction to Fourier optics (McGraw-Hill, New York, 1968) Google Scholar
  32. 32.
    J.D. Jackson, Classical electrodynamics (Wiley, New York, 1999) Google Scholar
  33. 33.
    J.C. Maxwell, A treatise on electricity and magnetism (Macmillan & Co., London, 1873) Google Scholar
  34. 34.
    J. Yang, L.W. Li, K. Yasumoto, L. Chang-Hong, IEEE Trans. Geosci. Remote Sens. 43, 280 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    P. Pawliuk, M. Yedlin, J. Opt. Soc. Am. A 26, 2558 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    F.G. Mitri, Opt. Lett. 36, 606 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    L.W. Davis, G. Patsakos, Opt. Lett. 6, 22 (1981) ADSCrossRefGoogle Scholar
  38. 38.
    M. Li, S. Yan, B. Yao, M. Lei, Y. Yang, J. Min, D. Dan, J. Opt. Soc. Am. A 31, 1710 (2014) ADSCrossRefGoogle Scholar
  39. 39.
    P.C. Chaumet, A. Rahmani, Opt. Express 17, 2224 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    L.D. Landau, E.M. Lifshitz, in Electrodynamics of continuous media, 2nd edn. revised and enlarged (Pergamon, Amsterdam, 1984), Vol. 8 Google Scholar
  41. 41.
    P. Vaveliuk, O. Martinez-Matos, Opt. Express 20, 26913 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    F.G. Mitri, J. Phys. Commun. 1, 015001 (2017) CrossRefGoogle Scholar
  43. 43.
    F.G. Mitri, J. Appl. Phys. 120, 104901 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    F.G. Mitri, J. Appl. Phys. 122, 224903 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chevron, Area 52 Technology – ETCSanta FeUSA

Personalised recommendations