Skip to main content
Log in

Study of electron beam induced ion-pair dissociation dynamics of O2 using velocity slice imaging spectrometer

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ion-pair dissociation (IPD) of molecular oxygen due to 21–35 eV energy electron collision has been studied using the time sliced velocity map imaging technique. The threshold of the process and the kinetic energy and angular distribution of the fragment negative ions are measured. The IPD is found to be occurring due to pre-dissociation of a Rydberg state via ion-pair state for lower incident electron energies as well as from direct excitation to the ion-pair states for higher primary beam energy. The location and symmetry of the excited states are determined from the kinetic energy and angular distribution data respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mahmoodi-Darian, S. Tian, S. Denifl, S. Matejcik, T. Märk, P. Scheier, Int. J. Mass Spectrom. 293, 51 (2010)

    Article  Google Scholar 

  2. Y. Kawarai, T. Weber, Y. Azuma, C. Winstead, V. McKoy, A. Belkacem, D. Slaughter, J. Phys. Chem. Lett. 5, 3854 (2014)

    Article  Google Scholar 

  3. S. Kouass Sahbani, P. Cloutier, A.D. Bass, D.J. Hunting, L. Sanche, J. Phys. Chem. Lett. 6, 3911 (2015)

    Article  Google Scholar 

  4. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  5. R.J. Van Brunt, L.J. Kieffer, Phys. Rev. A 2, 1899 (1970)

    Article  ADS  Google Scholar 

  6. D. Nandi, E. Krishnakumar, Int. J. Mass Spectrom. 289, 39 (2010)

    Article  Google Scholar 

  7. E. Szymańska, N.J. Mason, E. Krishnakumar, C. Matias, A. Mauracher, P. Scheier, S. Denifl, Int. J. Mass Spectrom. Ion Phys. 36–66, 356 (2014)

    Article  Google Scholar 

  8. D. Chakraborty, P. Nag, D. Nandi, Phys. Chem. Chem. Phys. 18, 32973 (2016)

    Article  Google Scholar 

  9. M. Krauss, D. Neumann, J. Chem. Phys. 63, 5073 (1975)

    Article  ADS  Google Scholar 

  10. R.P. Saxon, B. Liu, J. Chem. Phys. 67, 5432 (1977)

    Article  ADS  Google Scholar 

  11. N.J. Mason, B. Nair, S. Jheeta, E. Szymańska, Faraday Discuss. 168, 235 (2014)

    Article  ADS  Google Scholar 

  12. A.V. Baklanov, L.M.C. Janssen, D.H. Parker, L. Poisson, B. Soep, J.M. Mestdagh, O. Gobert, J. Chem. Phys. 129, 214306 (2008)

    Article  ADS  Google Scholar 

  13. C. Zhou, Y. Mo, J. Chem. Phys. 139, 084314 (2013)

    Article  ADS  Google Scholar 

  14. P.M. Dehmer, W.A. Chupka, J. Chem. Phys. 62, 4525 (1975)

    Article  ADS  Google Scholar 

  15. R.J. Van Brunt, L.J. Kieffer, J. Chem. Phys. 60, 3057 (1974)

    Article  ADS  Google Scholar 

  16. D. Nandi, V. Prabhudesai, E. Krishnakumar, Radiat. Phys. Chem. 75, 2151 (2006)

    Article  ADS  Google Scholar 

  17. D. Nandi, V.S. Prabhudesai, E. Krishnakumar, A. Chatterjee, Rev. Sci. Instrum. 76, 053107 (2005)

    Article  ADS  Google Scholar 

  18. H. Adaniya, D.S. Slaughter, T. Osipov, T. Weber, A. Belkacem, Rev. Sci. Instrum. 83, 023106 (2012)

    Article  ADS  Google Scholar 

  19. A. Moradmand, J.B. Williams, A.L. Landers, M. Fogle, Rev. Sci. Instrum. 84, 033104 (2013)

    Article  ADS  Google Scholar 

  20. W.W. Lozier, Phys. Rev. 46, 268 (1934)

    Article  ADS  Google Scholar 

  21. F.H. Dorman, J.D. Morrison, A.J.C. Nicholson, J. Chem. Phys. 32, 378 (1960)

    Article  ADS  Google Scholar 

  22. P. Nag, D. Nandi, Phys. Chem. Chem. Phys. 17, 7130 (2015)

    Article  Google Scholar 

  23. P. Nag, D. Nandi, Phys. Rev. A 91, 052705 (2015)

    Article  ADS  Google Scholar 

  24. P. Nag, D. Nandi, Phys. Rev. A 93, 012701 (2016)

    Article  ADS  Google Scholar 

  25. P. Nag, D. Nandi, Meas. Sci. Technol. 26, 095007 (2015)

    Article  ADS  Google Scholar 

  26. O. Jagutzki, A. Cerezo, A. Czasch, R. Dorner, M. Hattas, M. Huang, V. Mergel, U. Spillmann, K. Ullmann-Pfleger, T. Weber et al., IEEE Trans. Nucl. Sci. 49, 2477 (2002)

    Article  ADS  Google Scholar 

  27. D. Rapp, D.D. Briglia, J. Chem. Phys. 43, 1480 (1965)

    Article  ADS  Google Scholar 

  28. A. Moradmand, D.S. Slaughter, A.L. Landers, M. Fogle, Phys. Rev. A 88, 022711 (2013)

    Article  ADS  Google Scholar 

  29. NIST, http://www.nist.gov/pml/data/handbook/index.cfm

  30. P.J. Chantry, G.J. Schulz, Phys. Rev. 156, 134 (1967)

    Article  ADS  Google Scholar 

  31. T. Fiegele, G. Hanel, I. Torres, M. Lezius, T.D. Märk, J. Phys. B 33, 4263 (2000)

    Article  ADS  Google Scholar 

  32. G.H. Wannier, Phys. Rev. 90, 817 (1953)

    Article  ADS  Google Scholar 

  33. P.H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972)

    Article  ADS  Google Scholar 

  34. R.J. Van Brunt, J. Chem. Phys. 60, 3064 (1974)

    Article  ADS  Google Scholar 

  35. R.N. Zare, J. Chem. Phys. 47, 204 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamir Nag.

Additional information

Contribution to the Topical Issue “Low Energy Positron and Electron Interactions”, edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, P., Nandi, D. Study of electron beam induced ion-pair dissociation dynamics of O2 using velocity slice imaging spectrometer. Eur. Phys. J. D 72, 25 (2018). https://doi.org/10.1140/epjd/e2017-80567-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80567-9

Navigation