Skip to main content
Log in

Huygens–Fresnel picture for electron-molecule elastic scattering

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens–Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dill, J.L. Dehmer, J. Chem. Phys. 61, 692 (1974)

    Article  ADS  Google Scholar 

  2. D. Dill, J.L. Dehmer, Phys. Rev. Lett. 35, 213 (1975)

    Article  ADS  Google Scholar 

  3. J. Siegel, D. Dill, J.L. Dehmer, J. Chem. Phys. 64, 3204 (1976)

    Article  ADS  Google Scholar 

  4. J.W. Davenport, Phys. Rev. Lett. 36, 945 (1976)

    Article  ADS  Google Scholar 

  5. M. Venuti, M. Stener, P. Decleva, Chem. Phys. 234, 95 (1998)

    Article  ADS  Google Scholar 

  6. P. Downie, I. Powis, Phys. Rev. Lett. 82, 2864 (1999)

    Article  ADS  Google Scholar 

  7. P. Decleva, G. De Alti, G. Fronzoni, M. Stener, J. Phys. B 32, 4523 (1999)

    Article  ADS  Google Scholar 

  8. Y. Nikosaka, J.H.D. Eland, T.M. Watson, I. Powis, J. Chem. Phys. 115, 4593 (2001)

    Article  ADS  Google Scholar 

  9. A.V. Golovin, N.A. Cherepkov, J. Phys. B 35, 3191 (2002)

    Article  ADS  Google Scholar 

  10. K.H. Johnson, in Advances in quantum chemistry, edited by P.O. Löwdin (Academic, New York, 1973), Vol. 7, p. 143

  11. T.L. Loucks, The augmented plane wave method (Benjamin, New York, 1967)

  12. A.S. Baltenkov, U. Becker, S.T. Manson, A.Z. Msezane, J. Phys. B 45, 035202 (2012)

    Article  ADS  Google Scholar 

  13. M.L. Goldberger, K.M. Watson, Collision theory (John Wiley & Sons, Inc., New York, London, Sydney, 1964)

  14. N.F. Mott, H.S.W. Massey, The theory of atomic collisions (Clarendon Press, Oxford, 1965)

  15. L.L. Foldy, Phys. Rev. 67, 107 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Lax, Rev. Mod. Phys. 23, 287 (1951)

    Article  ADS  Google Scholar 

  17. H. Ekstein, Phys. Rev. 87, 31 (1952)

    Article  ADS  Google Scholar 

  18. K.A. Brueckner, Phys. Rev. 89, 834 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  19. K.M. Watson, Phys. Rev. 105, 1388 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.S. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B 40, 769 (2007)

    Article  ADS  Google Scholar 

  21. A.K. Kazansky, I.I. Fabrikant, Physics-Uspekhi 143, 601 (1984) [in Russian]

    Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Quantum mechanics, non-relativistic theory (Pergamon Press, Oxford, 1965)

  23. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover, New York, 1965)

  24. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum theory of angular momentum (World Scientific, Singapore, New Jersey, Hong Kong, 1988)

  25. B.M. Smirnov, Atomic collisions and processes in plasma (Atomizdat, Moscow, 1968) [in Russian]

  26. M.Y. Amusia, L.V. Chernysheva, Computation of atomic processes (“Adam Hilger” Institute of Physics Publishing, Bristol, Philadelphia, 1997)

  27. A.S. Davydov, Quantum mechanics (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfurt, 1965)

  28. C. Ramsauer, R. Kollath, Ann. Phys. (Leipzig) 12, 529 (1932)

    Article  ADS  Google Scholar 

  29. D.F. Golden, H.W. Bandel, J.A. Salerno, Phys. Rev. 146, 40 (1966)

    Article  ADS  Google Scholar 

  30. H.S.W. Massey, R.O. Ridley, Proc. Phys. Soc. (Lond.) A69, 659 (1956)

    Article  ADS  Google Scholar 

  31. J.C. Tully, R.S. Berry, J. Chem. Phys. 51, 2056 (1969)

    Article  ADS  Google Scholar 

  32. Y.N. Demkov, V.S. Rudakov, Soviet Phys. JETP 32, 1103 (1971)

    ADS  Google Scholar 

  33. S. Motoki et al., J. Phys. B 33, 4193 (2000)

    Article  ADS  Google Scholar 

  34. Y.N. Demkov, V.N. Ostrovskii, Zero-range potentials and their application in atomic physics (Plenum, New York, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Z. Msezane.

Additional information

Contribution to the Topical Issue “Low energy positron and electron interactions”, edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltenkov, A.S., Msezane, A.Z. Huygens–Fresnel picture for electron-molecule elastic scattering. Eur. Phys. J. D 71, 305 (2017). https://doi.org/10.1140/epjd/e2017-80421-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80421-2

Navigation