Skip to main content
Log in

Magnetic field-induced modification of selection rules for Rb D2 line monitored by selective reflection from a vapor nanocell

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

An Erratum to this article was published on 16 January 2018

This article has been updated

Abstract

Magnetic field-induced giant modification of the probabilities of five transitions of 5S1 / 2,F g = 2 → 5P3 / 2,F e = 4 of 85Rb and three transitions of 5S1 / 2,F g = 1 → 5P3 / 2,F e = 3 of 87Rb forbidden by selection rules for zero magnetic field has been observed experimentally and described theoretically for the first time. For the case of excitation with circularly-polarized (σ+) laser radiation, the probability of F g = 2,m F = − 2 → F e = 4,m F = − 1 transition becomes the largest among the seventeen transitions of 85Rb F g = 2 → F e = 1,2,3,4 group, and the probability of F g = 1, m F = − 1 → F e = 3,m F = 0 transition becomes the largest among the nine transitions of 87Rb F g = 1 → F e = 0,1,2,3 group, in a wide range of magnetic field 200–1000 G. Complete frequency separation of individual Zeeman components was obtained by implementation of derivative selective reflection technique with a 300 nm-thick nanocell filled with Rb, allowing formation of narrow optical resonances. Possible applications are addressed. The theoretical model is well consistent with the experimental results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 16 January 2018

    The two technical points below are corrected by this erratum: 1. The publisher apologizes for a technical problem occurring in the scale numbering of Figure 2. The figure is corrected below. Fig. 2 Diagram of the relevant transitions between the Zeeman sublevels of Rb D2 line with σ+ (left-circular) laser excitation for the case of (a) 85Rb (nuclear spin I = 5/2), and (b) 87Rb (nuclear spin I = 3/2). Each transition is labeled to facilitate identification in the following graphs. Linear Zeeman shift rates are indicated next to each hyperfine level. 2. Page 6, line 14 of the Conclusion section “Fg = 2, mF = −3 → Fe = 4, mF = −2” should be replaced by “Fg = 2, mF = −2 → Fe = 4, mF = −1”.

References

  1. E. Arimondo, M. Inguscio, P. Violino, Rev. Mod. Phys. 49, 31 (1977)

    Article  ADS  Google Scholar 

  2. D. Das, V. Natarajan, J. Phys. B: At. Mol. Opt. Phys. 40, 035001 (2008)

    Article  ADS  Google Scholar 

  3. D. Budker, D.F. Kimball, D.P. DeMille, Atomic Physics, An Exploration through Problems and Solutions, 2nd edn. (Oxford University Press, 2010)

  4. M. Auzinsh, D. Budker, S.M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford University Press, 2010)

  5. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, N. Cyr, Phys. Rev. A 42, 2766 (1990)

    Article  ADS  Google Scholar 

  6. S. Scotto, D. Ciampini, C. Rizzo, E. Arimondo, Phys. Rev. A 92, 063810 (2015)

    Article  ADS  Google Scholar 

  7. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008)

    Article  ADS  Google Scholar 

  8. A. Sargsyan, A. Tonoyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, D. Sarkisyan, Europhys. Lett. 110, 23001 (2015)

    Article  ADS  Google Scholar 

  9. A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014)

    Article  ADS  Google Scholar 

  10. G. Hakhumyan, C. Leroy, R. Mirzoyan, Y. Pashayan-Leroy, D. Sarkisyan, Eur. Phys. J. D 66, 119 (2012)

    Article  ADS  Google Scholar 

  11. S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, M. Ducloy, Phys. Rev. A 57, R3169 (1998)

    Article  ADS  Google Scholar 

  12. A. Sargsyan, E. Klinger, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, D. Sarkisyan, JETP Lett. 104, 224 (2016)

    Article  ADS  Google Scholar 

  13. A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, D. Sarkisyan, J. Opt. Soc. Am. B 34, 776 (2017).

    Article  ADS  Google Scholar 

  14. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, M. Ducloy, Europhys. Lett. 63, 35 (2003)

    Article  ADS  Google Scholar 

  15. J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, I.G. Hughes, C.S. Adams, Phys. Rev. Lett. 108, 173601 (2012)

    Article  ADS  Google Scholar 

  16. B.A. Olsen, B. Patton, Y.-Y. Jau, W. Happer, Phys. Rev. A 84, 063410 (2011)

    Article  ADS  Google Scholar 

  17. L. Weller, K.S. Kleinbach, M.A. Zentile, S. Knappe, I.G. Hughes, C.S. Adams, Opt. Lett. 37, 3405 (2012)

    Article  ADS  Google Scholar 

  18. A. Sargsyan, A. Tonoyan, H. Hakhumyan, Y. Pashayan-Leroy, C. Leroy, D. Sarkisyan, Opt. Commun. 334, 208 (2015)

    Article  ADS  Google Scholar 

  19. G. Dutier, S. Saltiel, D. Bloch, M. Ducloy, J. Opt. Soc. Am. B 20, 793 (2003)

    Article  ADS  Google Scholar 

  20. R. Muller, A. Weis, Appl. Phys. B 66, 323 (1998)

    ADS  Google Scholar 

  21. A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, W. Gawlik, Opt. Lett. 39, 2270 (2014)

    Article  ADS  Google Scholar 

  22. K.A. Whittaker, J. Keaveney, I.G. Hughes, A. Sargysyan, D. Sarkisyan, B. Gmeiner, V. Sandoghdar, C.S. Adams, J. Phys.: Conf. Ser. 635, 122006 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Klinger.

Additional information

An erratum to this article is available at https://doi.org/10.1140/epjd/e2017-80712-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinger, E., Sargsyan, A., Tonoyan, A. et al. Magnetic field-induced modification of selection rules for Rb D2 line monitored by selective reflection from a vapor nanocell. Eur. Phys. J. D 71, 216 (2017). https://doi.org/10.1140/epjd/e2017-80291-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80291-6

Keywords

Navigation