Skip to main content
Log in

Localized structures and spatiotemporal chaos: comparison between the driven damped sine-Gordon and the Lugiato-Lefever model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Driven damped coupled oscillators exhibit complex spatiotemporal dynamics. An archetype model is the driven damped sine-Gordon equation, which can describe several physical systems such as coupled pendula, extended Josephson junction, optical systems and driven magnetic wires. Close to resonance an enveloped model in the form Lugiato-Lefever equation can be derived from the driven damped sine-Gordon equation. We compare the dynamics obtained from both models. Unexpectedly, qualitatively similar dynamical behaviors are obtained for both models including homogeneous steady states, localized structures, and pattern waves. For large forcing, both systems share similar spatiotemporal chaos.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987)

    Article  ADS  Google Scholar 

  2. D.W. McLaughlin, J.V. Moloney, A.C. Newell, Phys. Rev. Lett. 51, 75 (1983)

    Article  ADS  Google Scholar 

  3. D.W. McLaughlin, J.V. Moloney, A.C. Newell, Phys. Rev. Lett. 54, 681 (1985)

    Article  ADS  Google Scholar 

  4. A.M. Turing, Phil. Trans. R. Soc. Lond. B: Biol. Sci. 237, 37 (1952)

    Article  ADS  Google Scholar 

  5. I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  6. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (NY Interscience, New York, 1971)

  7. P. Kockaert, P. Tassin, G. Van der Sande, I. Veretennicoff, M. Tlidi, Phys. Rev. A 74, 033822 (2006)

    Article  ADS  Google Scholar 

  8. U. Peschel, O. Egorov, F. Lederer, Opt. Lett. 29, 1909 (2004)

    Article  ADS  Google Scholar 

  9. M. Haelterman, S. Trillo, S. Wabnitz, Opt. Commun. 91, 401 (1992)

    Article  ADS  Google Scholar 

  10. Y.K. Chembo, C.R. Menyuk, Phys. Rev. A 87, 053852 (2013)

    Article  ADS  Google Scholar 

  11. T. Hansson, D. Modotto, S. Wabnitz, Phys. Rev. A 88, 023819 (2013)

    Article  ADS  Google Scholar 

  12. A. Coillet, J. Dudley, G. Genty, L. Larger, Y.K. Chembo, Phys. Rev. A 89, 013835 (2014)

    Article  ADS  Google Scholar 

  13. M. Tlidi, M. Haelterman, P. Mandel, Europhys. Lett. 42, 505 (1998)

    Article  ADS  Google Scholar 

  14. M. Tlidi, M. Haelterman, P. Mandel, Quant. Semiclass. Opt.: J. Eur. Opt. Soc. B 10, 869 (1998)

    Article  ADS  Google Scholar 

  15. P. Tassin, G. Van der Sande, N. Veretenov, P. Kockaert, I. Veretennicoff, M. Tlidi, Opt. Express 14, 9338 (2006)

    Article  ADS  Google Scholar 

  16. G.J. Morales, Y.C. Lee, Phys. Rev. Lett. 33, 1016 (1974)

    Article  ADS  Google Scholar 

  17. K. Nozaki, N. Bekki, Phys. Lett. A 102, 383 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  18. D.J. Kaup, A.C. Newell, Phys. Rev. B 18, 5162 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Terrones, D.W. McLaughlin, E.A. Overman, A.J. Pearlstein, SIAM J. Appl. Math. 50, 791 (1990)

    Article  MathSciNet  Google Scholar 

  20. L.D. Landau, E.M. Lifshitz, Mechanics, Course of Theoretical Physics (Pergamon Press, 1976), Vol. 1

  21. A. Frova, M. Marenzana, Thus spoke Galileo: the great scientist’s ideas and their relevance to the present day (Oxford University Press, 2006)

  22. G.L. Baker, J.A. Blackburn, The pendulum: a case study in physics (Oxford University Press, 2005)

  23. Y.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989)

    Article  ADS  Google Scholar 

  24. N.N. Bogoliubov, Y.A. Mitropolski, Asymptotic methods in the theory of non-linear oscillations (Gordon and Breach, New York, 1961)

  25. J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams, The Sine-Gordon Model and its Applications (Springer, 2014)

  26. D. Bennett, A. Bishop, S. Trullinger, Zeitschrift für Physik B Condensed Matter 47, 265 (1982)

    Article  ADS  Google Scholar 

  27. L.P. Gor’kov, G. Grüner, Charge density waves in solids (Elsevier, 2012), Vol. 25

  28. O.M. Braun, Y. Kivshar, The Frenkel-Kontorova model: concepts, methods, and applications (Springer Science & Business Media, 2013)

  29. E. Berrios-Caro, M.G. Clerc, A.O. Leon, Phys. Rev. E 94, 052217 (2016)

    Article  ADS  Google Scholar 

  30. M. Clerc, P. Coullet, E. Tirapegui, Phys. Rev. Lett. 83, 3820 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Clerc, P. Coullet, E. Tirapegui, Opt. Commun. 167, 159 (1999)

    Article  ADS  Google Scholar 

  32. M. Clerc, P. Coullet, E. Tirapegui, Int. J. Bifurc. Chaos 11, 591 (2001)

    Article  Google Scholar 

  33. I.V. Barashenkov, Y.S. Smirnov, Phys. Rev. E 54, 5707 (1996)

    Article  ADS  Google Scholar 

  34. M. Tlidi, R. Lefever, P. Mandel, Quant. Semiclass. Opt.: J. Eur. Opt. Soc. B 8, 931 (1996)

    Article  ADS  Google Scholar 

  35. A.J. Scroggie, W.J. Firth, G.S. McDonald, M. Tlidi, R. Lefever, L.A. Lugiato, Chaos Solitons Fract. 4, 1323 (1994)

    Article  ADS  Google Scholar 

  36. I.V. Barashenkov, Y.S. Smirnov, N.V. Alexeeva, Phys. Rev. E 57, 2350 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Coen, M. Tlidi, P. Emplit, M. Haelterman, Phys. Rev. Lett. 83, 2328 (1999)

    Article  ADS  Google Scholar 

  38. S. Coulibaly, M. Taki, M. Tlidi, Opt. Express 22, 483 (2014)

    Article  ADS  Google Scholar 

  39. Z. Liu, M. Ouali, S. Coulibaly, M. Clerc, M. Taki, M. Tlidi, Opt. Lett. 42, 1063 (2017)

    Article  ADS  Google Scholar 

  40. N. Akhmediev, B. Kibler, F. Baronio, M. Beli, W.P. Zhong, Y. Zhang, W. Chang, J.M. Soto-Crespo, P. Vouzas, P. Grelu et al., J. Opt. 18, 063001 (2016)

    Article  ADS  Google Scholar 

  41. M. Tlidi, K. Panajotov, Chaos: Interdiscip. J. Nonlinear Sci. 27, 013119 (2017)

    Article  Google Scholar 

  42. F. Palmero, J. Han, L.Q. English, T. Alexander, P. Kevrekidis, Phys. Lett. A 380, 402 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Y. Xu, T.J. Alexander, H. Sidhu, P.G. Kevrekidis, Phys. Rev. E 90, 042921 (2014)

    Article  ADS  Google Scholar 

  44. M. Tlidi, M. Taki, T. Kolokolnikov, Chaos: Interdiscip. J. Nonlinear Sci. 17, 037101 (2007)

    Article  Google Scholar 

  45. O. Descalzi, M.G. Clerc, S. Residori, G. Assanto, Localized states in physics: solitons and patterns (Springer-Verlag Berlin Heidelberg, 2011)

  46. H.G. Purwins, H. Bdeker, S. Amiranashvili, Adv. Phys. 59, 485 (2010)

    Article  ADS  Google Scholar 

  47. M. Tlidi, K. Staliunas, K. Panajotov, A.G. Vladimirov, M.G. Clerc, Phil. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. (2014)

  48. L. Lugiato, P. Franco, M. Brambilla, Nonlinear Optical Systems (Cambridge University Press, 2015)

  49. D. Mihalache, Rom. Rep. Phys. 67, 1383 (2015)

    Google Scholar 

  50. Y. He, X. Zhu, D. Mihalache, Rom. J. Phys. 61, 595 (2016)

    Google Scholar 

  51. D. Mihalache, Rom. Rep. Phys. 69, 403 (2017)

    Google Scholar 

  52. M.G. Clerc, S. Coulibaly, D. Laroze, EPL 97, 30006 (2012)

    Article  ADS  Google Scholar 

  53. I. Barashenkov, E. Zemlyanaya, Phys. D: Nonlinear Phenom. 132, 363 (1999)

    Article  ADS  Google Scholar 

  54. J. Cuevas, L.Q. English, P.G. Kevrekidis, M. Anderson, Phys. Rev. Lett. 102, 224101 (2009)

    Article  ADS  Google Scholar 

  55. F. Leo, L. Gelens, P. Emplit, M. Haelterman, S. Coen, Opt. Express 21, 9180 (2013)

    Article  ADS  Google Scholar 

  56. M.G. Clerc, C. Falcón, M.A. García-Ñustes, V. Odent, I. Ortega, Chaos: Interdiscip. J. Nonlinear Sci. 24, 023133 (2014)

    Article  Google Scholar 

  57. A.R. Bishop, K. Fesser, P.S. Lomdahl, W.C. Kerr, M.B. Williams, S.E. Trullinger, Phys. Rev. Lett. 50, 1095 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  58. A.R. Bishop, M.G. Forest, D.W. McLaughlin, E. Overman, Phys. D: Nonlinear Phenom. 23, 293 (1986)

    Article  ADS  Google Scholar 

  59. E. Overman, D.W. McLaughlin, A.R. Bishop, Phys. D: Nonlinear Phenom. 19, 1 (1986)

    Article  ADS  Google Scholar 

  60. A.R. Bishop, D. McLaughlin, M.G. Forest, E.A. Overman, Phys. Lett. A 127, 335 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  61. A. Bishop, M.G. Forest, D. McLaughlin, E. Overman, Phys. Lett. A 144, 17 (1990)

    Article  ADS  Google Scholar 

  62. A.R. Bishop, R. Flesch, M.G. Forest, D.W. McLaughlin, E.A. Overman, II, SIAM J. Math. Anal. 21, 1511 (1990)

    Article  MathSciNet  Google Scholar 

  63. A. Gavrielides, T. Kottos, V. Kovanis, G.P. Tsironis, Phys. Rev. E 58, 5529 (1998)

    Article  ADS  Google Scholar 

  64. A. Pikovsky, A. Politi, Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge University Press, 2016)

  65. H. Chaté, Nonlinearity 7, 185 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  66. J.F. Claerbout, Fundamentals of Geophysical Data Processing (McGraw-Hill, New York, 1976)

  67. M.G. Clerc, N. Verschueren, Phys. Rev. E 88, 052916 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel G. Clerc.

Additional information

Contribution to the Topical Issue: “Theory and Applications of the Lugiato-Lefever Equation”, edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferré, M.A., Clerc, M.G., Coulibally, S. et al. Localized structures and spatiotemporal chaos: comparison between the driven damped sine-Gordon and the Lugiato-Lefever model. Eur. Phys. J. D 71, 172 (2017). https://doi.org/10.1140/epjd/e2017-80072-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80072-3

Navigation