Theoretical study of physical and thermodynamic properties of AlnNm clusters*

  • Boris I. Loukhovitski
  • Alexander S. Sharipov
  • Alexander M. Starik
Regular Article

Abstract

Geometrical structures and physical properties, such as collision diameter, rotational constants, characteristic vibrational temperatures, dipole moment, static isotropic polarizability, enthalpy of formation of various forms of Al n N m clusters with n = 0,...,5, m = 0,...,5, are analyzed with the usage of density functional theory. Different isomeric forms of these clusters with the isomerization energy up to 5 eV have been identified by using the original multistep heuristic algorithm that was based on semiempirical calculations, ab initio and density functional theory approaches and comprises the elements of genetic algorithms. Temperature dependencies of enthalpy, entropy and specific heat capacity have been calculated both for the individual isomers and for the Boltzmann ensemble of each class of clusters taking into account the anharmonicity of cluster vibrations and the contribution of excited electronic states of clusters. Novel criterion of the stability of isomeric forms, based on the maximal vibrational energy of the modes of cluster, has been proposed. The potentialities of the application of small Al n N m clusters as the components of energetic materials are also considered.

Graphical abstract

Keywords

Clusters and Nanostructures 

Supplementary material

References

  1. 1.
    S.N. Khanna, P. Jena, Phys. Rev. B 51, 13705 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    A.W. Castleman Jr., S.N. Khanna, J. Phys. Chem. C 113, 2664 (2009)CrossRefGoogle Scholar
  3. 3.
    M.T. Nguyen, Coord. Chem. Rev. 244, 93 (2003)CrossRefGoogle Scholar
  4. 4.
    N.E. Schultz, G. Staszewska, P. Staszewski, D.G. Truhlar, J. Phys. Chem. B 108, 4850 (2004)CrossRefGoogle Scholar
  5. 5.
    A.B.C. Patzer, C. Chang, E. Sedlmayr, D. Sulzle, Eur. Phys. J. D 32, 329 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S. Neukermans, N. Veldeman, E. Janssens, P. Lievens, Z. Chen, P.v.R. Schleyer, Eur. Phys. J. D 45, 301 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Deng, K.H. Su, X. Wang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, L.T. Zhang, Eur. Phys. J. D 49, 21 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    F.Y. Naumkin, J. Phys. Chem. A 112, 4660 (2008)CrossRefGoogle Scholar
  9. 9.
    V.O. Kiohara, E.F.V. Carvalho, C.W.A. Paschoal, F.B. Machado, O. Roberto-Neto, Chem. Phys. Lett. 568–569, 42 (2013)CrossRefGoogle Scholar
  10. 10.
    A.S. Sharipov, B.I. Loukhovitski, A.M. Starik, Phys. Scr. 88, 058307 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    C.N. van Dijk, D.R. Roy, A. Fielicke, T. Rasing, A.C. Reber, S.N. Khanna, A. Kirilyuk, Eur. Phys. J. D 68, 357 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    B.I. Loukhovitski, A.S. Sharipov, A.M. Starik, J. Phys. Chem. A 119, 1369 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Huang, Y. Su, L. Sai, J. Zhao, V. Kumar, J. Clust. Sci. 26, 389 (2015)CrossRefGoogle Scholar
  14. 14.
    S.K. Nayak, S.N. Khanna, P. Jena, Phys. Rev. B 57, 3787 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    R.W. Grimes, Philos. Mag. B 79, 407 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    B.H. Boo, Z. Liu, J. Phys. Chem. A 103, 1250 (1999)CrossRefGoogle Scholar
  17. 17.
    L. Andrews, M. Zhou, G.V. Chertihin, W.D. Bare, J. Phys. Chem. A 104, 1656 (2000)CrossRefGoogle Scholar
  18. 18.
    W.U. Haishun, Z. Congjie, X.U. Xiaohong, Z. Lansun, Z. Qian’er, Sci. China Ser. B 43, 634 (2000)CrossRefGoogle Scholar
  19. 19.
    A.K. Kandalam, R. Pandey, M.A. Blanco, A. Costales, J.M. Recio, J.M. Newsam, J. Phys. Chem. B 104, 4361 (2000)CrossRefGoogle Scholar
  20. 20.
    A. Costales, A.K. Kandalam, A.M. Pendas, M.A. Blanco, J.M. Recio, R. Pandey, J. Phys. Chem. B 104, 4368 (2000)CrossRefGoogle Scholar
  21. 21.
    C. Chang, A.B.C. Patzer, E. Sedlmayr, T. Steinke, D. Sulzle, Chem. Phys. 271, 283 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Kandalam, M.A. Blanco, R. Pandey, J. Phys. Chem. B 105, 6080 (2001)CrossRefGoogle Scholar
  23. 23.
    B.D. Leskiw, A.W. Castleman Jr., C. Ashman, S.N. Khanna, J. Chem. Phys. 114, 1165 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Xu, D.D.L. Chung, C. Mroz, Composites Part A 32, 1749 (2001)CrossRefGoogle Scholar
  25. 25.
    E.P.F. Lee, J.M. Dyke, R.P. Claridge, J. Phys. Chem. A 106, 8680 (2002)CrossRefGoogle Scholar
  26. 26.
    B. Song, P. Cao, Phys. Rev. B 66, 033406 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    A.K. Kandalam, M.A. Blanco, R. Pandey, J. Phys. Chem. B 106, 1945 (2002)CrossRefGoogle Scholar
  28. 28.
    A. Costales, A.K. Kandalam, R. Pandey, J. Phys. Chem. B 107, 4508 (2003)CrossRefGoogle Scholar
  29. 29.
    H.S. Wu, F.Q. Zhang, X.H. Xu, C.J. Zhang, H. Jiao, J. Phys. Chem. A 107, 204 (2003)CrossRefGoogle Scholar
  30. 30.
    Z.Y. Jiang, W.J. Ma, H.S. Wu, Z.H. Jin, J. Mol. Struct. 678, 123 (2004)CrossRefGoogle Scholar
  31. 31.
    X. Li, L.S. Wang, Eur. Phys. J. D 34, 9 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    L. Ling, B. Song, P.L. Cao, J. Mol. Struct. 728, 215 (2005)CrossRefGoogle Scholar
  33. 33.
    L. Guo, H.S. Wu, Z.H. Jin, Int. J. Quantum. Chem. 103, 291 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    G. Meloni, S.M. Sheehan, B.F. Parsons, D.M. Neumark, J. Phys. Chem. A 110, 3527 (2006)CrossRefGoogle Scholar
  35. 35.
    B.B. Averkiev, A.I. Boldyrev, X. Li, L.S. Wang, J. Chem. Phys. 125, 124305 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    A. Kalemos, A. Mavridis, J. Phys. Chem. A 111, 11221 (2007)CrossRefGoogle Scholar
  37. 37.
    Q. Bai, B. Song, J. Hou, P. He, Phys. Lett. A 372, 4545 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kalemos, A. Mavridis, J. Chem. Phys. 130, 154308 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    V.F. Curotto, R.P. Diez, Comput. Mater. Sci. 50, 3390 (2011)CrossRefGoogle Scholar
  40. 40.
    T.W. Hashman, S.E. Pratsinis, J. Am. Ceram. Soc. 75, 920 (1992)CrossRefGoogle Scholar
  41. 41.
    S. Nakamura, in Proceedings of International Symposium on Blue Laser and Light Emitting Diodes, edited by A. Yoshikawa, K. Kishino, M. Klobayashi, T. Yasuda, (Chiba University Press, 1996), p. 119Google Scholar
  42. 42.
    J.D. Simmons, J.K. McDonald, J. Mol. Spectrosc. 41, 584 (1972)ADSCrossRefGoogle Scholar
  43. 43.
    M. Pelissier, J.P. Malrieu, J. Mol. Spectrosc. 77, 322 (1979)ADSCrossRefGoogle Scholar
  44. 44.
    S.R. Langhoff, C.W. Bauschlicher Jr., L.G.M. Petterson, J. Chem. Phys. 89, 7354 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    G.L. Gutsev, P. Jena, R.J. Bartlett, J. Chem. Phys. 110, 2928 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    K.A. Gingerich, J. Chem. Soc. D 7, 441b (1970)CrossRefGoogle Scholar
  47. 47.
    G. Meloni, K.A. Gingerich, J. Chem. Phys. 113, 10978 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    Z.H. Li, D.G. Truhlar, Chem. Sci. 5, 2605 (2014)CrossRefGoogle Scholar
  49. 49.
    G.B. Rocha, R.O. Freire, A.M. Simas, J.J. Stewart, J. Comput. Chem. 27, 1101 (2006)CrossRefGoogle Scholar
  50. 50.
    J.A. Pople, R.K. Nesbet, J. Chem. Phys. 22, 571 (1954)ADSCrossRefGoogle Scholar
  51. 51.
    R.P.F. Kanters, K.J. Donald, J. Chem. Theory Comput. 10, 5729 (2014)CrossRefGoogle Scholar
  52. 52.
    A. Tekin, B. Hartke, J. Theor. Comput. Chem. 4, 1119 (2005)CrossRefGoogle Scholar
  53. 53.
    S. Heiles, R.L. Johnston, Int. J. Quantum Chem. 113, 2091 (2013)CrossRefGoogle Scholar
  54. 54.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  55. 55.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, S.H. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  56. 56.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  57. 57.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    H.L. Schmider, A.D. Becke, J. Chem. Phys. 108, 9624 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    C. Adamo, V. Barone, J. Chem. Phys. 108, 664 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    P.J. Wilson, T.J. Bradley, T.J. Tozer, J. Chem. Phys. 115, 9233 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    A.J. Cohen, N.C. Handy, Mol. Phys. 99, 607 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    X. Xu, Q. Zhang, R.P. Muller, W.A. Goddard III, J. Chem. Phys. 122, 014105 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)ADSCrossRefGoogle Scholar
  65. 65.
    A.A. Granovsky, Firefly version 8.0, http://classic.chem.msu.su/gran/firefly/index.html
  66. 66.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  67. 67.
    A.S. Sharipov, B.I. Loukhovitski, A.M. Starik, Eur. Phys. J. D 69, 211 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    Y. Tantirungrotechai, K. Phanasant, S. Roddecha, P. Surawatanawong, V. Sutthikhum, J. Limtrakul, J. Mol. Struct. 760, 189 (2006)CrossRefGoogle Scholar
  69. 69.
    G.A. Petersson, in Quantum-Mechanical Prediction of Thermochemical Data, edited by J. Cioslowski (Kluwer Academic Publishers, New York, 2002), pp. 99–130Google Scholar
  70. 70.
    D.D.A. McQuarrie, J.J.D. Simon, Molecular thermodynamics (Univ Science Books, 1999)Google Scholar
  71. 71.
    V. Barone, J. Chem. Phys. 120, 3059 (2004)ADSCrossRefGoogle Scholar
  72. 72.
    B. Njegic, M.S. Gordon, J. Chem. Phys. 125, 224102 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Princeton, New Jersey, 1950)Google Scholar
  74. 74.
    A.A. Zavitsas, J. Phys. Chem. 91, 5573 (1987)CrossRefGoogle Scholar
  75. 75.
    Z.H. Li, A.W. Jasper, D.G. Truhlar, J. Am. Chem. Soc. 129, 14899 (2007)CrossRefGoogle Scholar
  76. 76.
    S. Grimme, Chem. Eur. J. 18, 9955 (2012)CrossRefGoogle Scholar
  77. 77.
    M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996)ADSCrossRefGoogle Scholar
  78. 78.
    I.V. Dorogan, Russ. J. Gen. Chem. 78, 774 (2007)CrossRefGoogle Scholar
  79. 79.
    E. Kaveei, M. Mohammadpour, Z. Jamshidi, J. Phys. Chem. A 119, 8579 (2015)CrossRefGoogle Scholar
  80. 80.
    A.S. Sharipov, B.I. Loukhovitski, C.-J. Tsai, A.M. Starik, Eur. Phys. J. D 68, 99 (2014)ADSCrossRefGoogle Scholar
  81. 81.
    A.S. Sharipov, B.I. Loukhovitski, A.M. Starik, J. Phys. B 49, 125103 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    R.H. Krech, D.L. McFadden, J. Am. Chem. Soc. 99, 8402 (1977)CrossRefGoogle Scholar
  83. 83.
    R. Cammi, M. Cossi, J. Tomasi, J. Chem. Phys. 104, 4611 (1996)ADSCrossRefGoogle Scholar
  84. 84.
    A.M. Starik, A.S. Sharipov, B.I. Loukhovitski, A.M. Savel’ev, Phys. Scr. 91, 013004 (2016)ADSCrossRefGoogle Scholar
  85. 85.
    F.H. Stillinger, Phys. Rev. E 59, 48 (1999)ADSCrossRefGoogle Scholar
  86. 86.
    C.G. Zhan, F. Zheng, D.A. Dixon, J. Am. Chem. Soc. 124, 14795 (2002)CrossRefGoogle Scholar
  87. 87.
    K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), Vol. 4Google Scholar
  88. 88.
    R.J. Bartlett, S. Fau, M. Tobita, K. Wilson, A. Perera, Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics, Quantum Theory Project (University of Florida, Gainesville, 2001)Google Scholar
  89. 89.
    D.A. Dixon, D. Feller, K.O. Christe, W.W. Wilson, A. Vij, V. Vij, H.D.B. Jenkins, R.M. Olson, M.S. Gordon, J. Am. Chem. Soc. 126, 834 (2004)CrossRefGoogle Scholar
  90. 90.
    J.J. BelBruno, Chem. Phys. Lett. 313, 795 (1999)ADSCrossRefGoogle Scholar
  91. 91.
    T. Wu, Y.N. Kalugina, A.J. Thakkar, Chem. Phys. Lett. 635, 257 (2015)CrossRefGoogle Scholar
  92. 92.
    G. Maroulis, Int. J. Quantum Chem. 112, 2231 (2012)CrossRefGoogle Scholar
  93. 93.
    G. Maroulis, Struct. Bond. 149, 95 (2012)CrossRefGoogle Scholar
  94. 94.
    P. Milani, I. Moullet, W.A. de Heer, Phys. Rev. A 42, 5150 (1990)ADSCrossRefGoogle Scholar
  95. 95.
    P. Fuentealba, Chem. Phys. Lett. 397, 459 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    T. Fleig, Phys. Rev. A 72, 052506 (2005)ADSCrossRefGoogle Scholar
  97. 97.
    M. Alipour, A. Mohajeri, J. Phys. Chem. A 114, 12709 (2010)CrossRefGoogle Scholar
  98. 98.
    V. Kresin, Phys. Rev. B 39, 3042 (1989)ADSCrossRefGoogle Scholar
  99. 99.
    T. Miller, CRC Handbook of Chemistry and Physics Atomic and molecular polarizabilities 77, 193 (2000)Google Scholar
  100. 100.
    G. Maroulis, J. Chem. Phys. 118, 2673 (2003)ADSCrossRefGoogle Scholar
  101. 101.
    D. Xenides, J. Mol. Struct. 764, 41 (2006)CrossRefGoogle Scholar
  102. 102.
    J.F. Clarke, M. McChesney, The dynamics of real gases (Atomic and molecular structure effects on dynamic behavior of real gas systems) (Butterworths, London, 1964)Google Scholar
  103. 103.
    CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 90th edn. (CRC Press, 2010)Google Scholar
  104. 104.
    O. Kwon, M.L. McKee, Polynitrogens as promising high-energy density materials: computational design, in Theoretical and Computational Chemistry. Energetic Materials, Part 1: Decomposition, Crystal and Molecular Properties, edited by P.A. Politzer, J.S. Murray (Elsevier, 2003), Chap. 14, Vol. 12, pp. 405–420Google Scholar
  105. 105.
    P.K. Chattaraj, P. Fuentealba, P. Jaque, A. Toro-Labbe, J. Phys. Chem. A 103, 9307 (1999)CrossRefGoogle Scholar
  106. 106.
    P. Jaque, A. Toro-Labbe, J. Chem. Phys. 117, 3208 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Boris I. Loukhovitski
    • 1
  • Alexander S. Sharipov
    • 1
  • Alexander M. Starik
    • 1
  1. 1.Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations