A coupled performance and thermal model for radio-frequency gridded ion thrusters*

  • Mantas Dobkevicius
  • Davar Feili
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Physics of Ion Beam Sources


Recently proposed space missions such as Darwin, eLISA and NGGM have encouraged the development of electric propulsion thrusters capable of operating in the micro-Newton (μN) thrust range. To meet these requirements, radio frequency (RF) gridded-ion thrusters need to be scaled down to a few centimeters in size. Due to the small size of these thrusters, it is important to accurately determine the thermal and performance parameters. To achieve this, a multi-physics performance model has been developed, composed of plasma discharge, 2D axisymmetric ion extraction, 3D electromagnetic and RF circuit models. The plasma discharge model itself is represented using 0D global, 2D axisymmetric and 3D molecular neutral gas, and Boltzmann electron transport sub-models. A 3D thermal model is introduced to determine the temperature distribution for various throttle points, using as inputs the plasma and electromagnetic field heating values obtained from the performance model. This also allows the validation of the performance model itself. Additionally, we analyze the effect the thruster’s temperatures play on the plasma properties/performance and vice versa. The model is based on the RIT 3.5 thruster developed for the NGGM mission geometry and predicts the RIT 3.5 experimental data within approximately 10%.

Graphical abstract


  1. 1.
    W. Hittorf, Ann. Phys. Chem. 21, 90 (1884)ADSCrossRefGoogle Scholar
  2. 2.
    H.W. Loeb, J. Spacecraft Rockets 8, 494 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    R. Killinger, H. Leiter, R. Kukies, in the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, 2007Google Scholar
  4. 4.
    M. Kilter, A. Karlsson, in Proceedings of the 4th International Spacecraft Propulsion Conference, Sardinia, Italy, 2004Google Scholar
  5. 5.
    H. Leiter et al., in the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, 2011Google Scholar
  6. 6.
    D. Feili et al., in the 30th ISTS, 34th IEPC, 6th NSAT Joint Conference, Kobe-Hyogo, 2015Google Scholar
  7. 7.
    J.J. Thompson, Phil. Mag. 32, 321 (1890)CrossRefGoogle Scholar
  8. 8.
    R.B. Piejak, V. Godyak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 179 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    J.T. Gudmundsson, M.A. Lieberman, Plasma Sources Sci. Technol. 6, 540 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    G.G. Lister, Y.M. Li, V.A. Godyak, J. Appl. Phys. 79, 8993 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    D.M. Goebel, IEEE Trans. Plasma Sci. 36, 2111 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    P. Chabert, J. Arancibia Monreal, J. Bredin, L. Popelier, A. Aanesland, Phys. Plasmas 19, 073512 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C. Volkmar, U. Ricklefs, Eur. Phys. J. D 69, 227 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    W. Gartner, B. Lotz, B.K. Meyer, in the 33rd International Electric Propulsion Conference, Washington, D.C, 2013Google Scholar
  15. 15.
    J. Van Noord, in the 43rd Joint Propulsion Conference and Exhibit, Cincinnati, OH, 2007Google Scholar
  16. 16.
    COMSOL Group, “COMSOL”, multi-Physics Software Package, Ver. 5.1, Stockholm, 2015Google Scholar
  17. 17.
    P. Chabert, N. Braithwaite, Physics of Radio-Frequency Plasmas (Cambridge University Press, Cambridge, 2011)Google Scholar
  18. 18.
    D. Goebel, I. Katz, Fundamentals of Electric Propulsion (John Wiley & Sons, Hoboken, NJ, 2005)Google Scholar
  19. 19.
    A. Lieberman, M. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (John Wiley & Sons, New Jersey, 2005)Google Scholar
  20. 20.
    T. Kalvas, O. Tarvainen, T. Ropponen, O. Steczkiewicz, J. Arje, H. Clark, Rev. Sci. Instrum. 81, 02B703 (2010)Google Scholar
  21. 21.
    Cadence Design Systems Inc., “PSPICE”, electronics Circuit Modelling Software Package, Ver. 9.1, San Jose, CA, 2015Google Scholar
  22. 22.
    J. Meunier, Ph. Belenguer, J.P. Boeuf, J. Appl. Phys. 78, 731 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Y.M. Aliev, A.V. Bychenkov, H. Schluter, Philos. Mag. 4, 2413 (1967)Google Scholar
  24. 24.
    V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Phys. Rev. Lett. 80, 3264 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    G. Hagelaar, L. Pitchford, Plasma Sources Science and Technology, 14, 722 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    M. Schäfer, Ph.D. Dissertation, Physics Dept., University of Giessen, Giessen, 1971Google Scholar
  27. 27.
    I. Shkarofsky, T. Johnston, M. Bachynski, The Particle Kinetics of the Plasmas (Addison-Wesley, 1996)Google Scholar
  28. 28.
    J. Yogesh, E.T. Kenneth, Computational Heat Transfer, 1st edn. (Hemisphere Publishing Corporation, Springer-Verlag, Berlin, 1986)Google Scholar
  29. 29.
    A. Bejan, A.D. Kraus, Heat Transfer Handbook, 1st edn. (John Wiley & Sons, Hoboken, New Jersey, 2003)Google Scholar
  30. 30.
    C. Volkmar, U. Ricklefs, in the 2014 Space Propulsion Conference, Cologne, 2014Google Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.University of SouthamptonHampshireUK

Personalised recommendations