Advertisement

Higher lying resonances in low-energy electron scattering with carbon monoxide*

  • Amar Dora
  • Jonathan Tennyson
  • Kalyan Chakrabarti
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Advances in Positron and Electron Scattering

Abstract

R-matrix calculations on electron collisions with CO are reported whose aim is to identify any higher-lying resonances above the well-reported and lowest 2 Π resonance at about 1.6 eV. Extensive tests with respect to basis sets, target models and scattering models are performed. The final results are reported for the larger cc-pVTZ basis set using a 50 state close-coupling (CC) calculation. The Breit-Wigner eigenphase sum and the time-delay methods are used to detect and fit any resonances. Both these methods find a very narrow 2 Σ + symmetry Feshbach-type resonance very close to the target excitation threshold of the b 3 Σ + state which lies at 12.9 eV in the calculations. This resonance is seen in the CC calculation using cc-pVTZ basis set while a CC calculation using the cc-pVDZ basis set does not produce this feature. The electronic structure of CO is analysed in the asymptotic region; 45 molecular states are found to correlate with states dissociating to an anion and an atom. Electronic structure calculations are used to study the behaviour of these states at large internuclear separation. Quantitative results for the total, elastic and electronic excitation cross sections are also presented. The significance of these results for models of the observed dissociative electron attachment of CO in the 10 eV region is discussed.

Graphical abstract

References

  1. 1.
    G.N. Haddad, H.B. Milloy, Australian J. Phys. 36, 473 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    M. Allan, J. Electron Spectrosc. Related Phenom. 48, 219 (1989)CrossRefGoogle Scholar
  3. 3.
    J.C. Gibson, L.A. Morgan, R.J. Gulley, M.J. Brunger, C.T. Bundschu, S.J. Buckman, J. Phys. B 29, 3197 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    G.B. Poparić, D.S. Belić, M.D. Vicić, Phys. Rev. A 73, 062713 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Allan, Phys. Rev. A 81, 042706 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Salvini, P.G. Burke, C.J. Noble, J. Phys. B 17, 2549 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    L.A. Morgan, J. Phys. B 24, 4649 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    W. Yuan-Cheng, M. Jia, Z. Ya-Jun, Chinese Phys. B 22, 023402 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    V. Laporta, C.M. Cassidy, J. Tennyson, R. Celiberto, Plasma Sources Sci. Technol. 21, 045005 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    V. Laporta, R. Celiberto, J. Tennyson, Plasma Sources Sci. Technol. 25, 01LT04 (2016)CrossRefGoogle Scholar
  11. 11.
    C.A. Weatherford, W.M. Huo, Phys. Rev. A 41, 186 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    L.A. Morgan, J. Tennyson, J. Phys. B 26, 2429 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    M.T. Lee, A.M. Machado, M.M. Fujimoto, L.E. Machado, L.M. Brescansin, J. Phys. B 29, 4285 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    M.T. Lee, I. Iga, L.M. Brescansin, L.E. Machado, F.B.C. Machado, J. Mol. Struct. (THEOCHEM) 585, 181 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Gracas, R. Martins, A.M. Maniero, L.E. Machado, J.D.M. Vianna, Brazilian J. Phys. 35, 945 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    R. Riahi, P. Teulet, N. Jaidane, A. Gleizes, Eur. Phys. J. D 56, 67 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    D. Rapp, D.D. Briglia, J. Chem. Phys. 43, 1480 (1965)ADSCrossRefGoogle Scholar
  18. 18.
    A. Stamatovic, G.J. Schulz, J. Chem. Phys. 53, 2663 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    J. Comer, F.H. Read, J. Phys. B 4, 1678 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    L. Sanche, G.J. Schulz, Phys. Rev. Lett. 26, 943 (1971)ADSCrossRefGoogle Scholar
  21. 21.
    I. Cadex, M. Tronc, R.I. Hall, J. Phys. B 8, L73 (1975)ADSCrossRefGoogle Scholar
  22. 22.
    R.I. Hall, I. Cadex, C. Schermann, M. Tronc, Phys. Rev. A 15, 599 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    P. Nag, D. Nandi, Phys. Chem. Chem. Phys. 17, 7130 (2015)CrossRefGoogle Scholar
  24. 24.
    S.X. Tian, B. Wu, L. Xia, Y.F. Wang, H.K. Li, X.J. Zeng, Y. Luo, J. Yang, Phys. Rev. A 88, 012708 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    P. Nag, D. Nandi, Phys. Rev. A 91, 056701 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S.X. Tian, Y. Luo, Phys. Rev. A 91, 056702 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    X.D. Wang, C.J. Xuan, Y. Luo, S.X. Tian, J. Chem. Phys. 143, 066101 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    G.J. Schulz, Rev. Mod. Phys. 45, 423 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Morgan, J. Phys. B 31, 5003 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, J. Phys. B 35, 543 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Itikawa, J. Phys. Chem. Ref. Data 44, 013105 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    T. Wang, Q. Cheng, Opt. Laser Technol. 33, 475 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    C. Gorse, M. Capitelli, Chem. Phys. 85, 177 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    T. Kozak, A. Bogaerts, Plasma Sources Sci. Technol. 24, 015024 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    M. Capitelli, G. Colonna, G. D’Ammando, V. Laporta, A. Laricchiuta, Chem. Phys. 438, 31 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    W.H. Liu, G.A. Victor, Astrophys. J. 435, 909 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    L. Campbell, M.J. Brunger, Geophys. Res. Lett. 36, L03101 (2009)ADSGoogle Scholar
  38. 38.
    L. Campbell, M. Allan, M.J. Brunger, J. Geophys. Res. 116, A09321 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    T.H. Hoffmann, M. Allan, K. Franz, M.W. Ruf, H. Hotop, G. Sauter, W. Meyer, J. Phys. B 42, 215202 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    D.T. Stibbe, J. Tennyson, Chem. Phys. Lett. 308, 532 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    P.K. Pearson, H. Lefebvre-Brion, Phys. Rev. A 13, 2106 (1976)ADSCrossRefGoogle Scholar
  42. 42.
    J. Tennyson, Phys. Rep. 491, 29 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    J. Tennyson, J. Phys. B 29, 6185 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    J.D. Gorfinkiel, J. Tennyson, J. Phys. B 37, L343 (2004)CrossRefGoogle Scholar
  45. 45.
    J.D. Gorfinkiel, J. Tennyson, J. Phys. B 38, 1607 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    G. Halmová, J.D. Gorfinkiel, J. Tennyson, J. Phys. B 41, 155201 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    W.J. Brigg, J. Tennyson, M. Plummer, J. Phys. B 47, 185203 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    A.U. Hazi, Phys. Rev. A 19, 920 (1979)ADSCrossRefGoogle Scholar
  49. 49.
    J. Tennyson, C.J. Noble, Comput. Phys. Commun. 33, 421 (1984)ADSCrossRefGoogle Scholar
  50. 50.
    J.M. Carr, P.G. Galiatsatos, J.D. Gorfinkiel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Masin, M. Plummer, J. Tennyson, Eur. Phys. J. D 66, 58 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    F.T. Smith, Phys. Rev. 118, 349 (1960)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    D.T. Stibbe, J. Tennyson, J. Phys. B 29, 4267 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    D.T. Stibbe, J. Tennyson, Comput. Phys. Commun. 114, 236 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    D. Little, J. Tennyson, M. Plummer, A. Sunderland, Comput. Phys. Commun. (2016)Google Scholar
  55. 55.
    D.A. Little, J. Tennyson, J. Phys. B 47, 105204 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    H.J. Werne et al., Molpro, version 2006.1, a package of ab initio programs (2006), see http://www.molpro.net
  57. 57.
    L.A. Morgan, J. Tennyson, C.J. Gillan, Comput. Phys. Commun. 114, 120 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    J. Tennyson, L.A. Morgan, Phil. Trans. A 357, 1161 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    J. Tennyson, J. Phys. B 29, 1817 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    E.S. Nielsen, P. Jørgensen, J. Oddershede, J. Chem. Phys. 73, 6238 (1980)ADSCrossRefGoogle Scholar
  61. 61.
    K.P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)Google Scholar
  62. 62.
    C. Blondel, Phys. Scr. T 58, 31 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    D. Feldmann, Chem. Phys. Lett. 47, 338 (1977)ADSCrossRefGoogle Scholar
  64. 64.
    L.K. McKemmish, S.N. Yurchenko, J. Tennyson, Mol. Phys. in press (2016)Google Scholar
  65. 65.
    J. Tennyson, L. Lodi, L.K. McKemmish, S.N. Yurchenko, J. Phys. B 49, 102001 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    A. Faure, J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, Comput. Phys. Commun. 144, 224 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Chem. Phys. 130, 164307 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    S.E. Branchett, J. Tennyson, Phys. Rev. Lett. 64, 2889 (1990)ADSCrossRefGoogle Scholar
  69. 69.
    S.E. Branchett, J. Tennyson, L.A. Morgan, J. Phys. B 23, 4625 (1990)ADSCrossRefGoogle Scholar
  70. 70.
    D.T. Stibbe, J. Tennyson, J. Phys. B 31, 815 (1998)ADSCrossRefGoogle Scholar
  71. 71.
    D.T. Stibbe, J. Tennyson, Phys. Rev. Lett. 79, 4116 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    D.T. Stibbe, J. Tennyson, J. Phys. B 30, L301 (1997)ADSCrossRefGoogle Scholar
  73. 73.
    R. Celiberto, R.K. Janev, J.M. Wadehra, J. Tennyson, Chem. Phys. 398, 206 (2012)ADSCrossRefGoogle Scholar
  74. 74.
    R. Celiberto, R.K. Janev, V. Laporta, J. Tennyson, J.M. Wadehra, Phys. Rev. A 88, 062701 (2013)ADSCrossRefGoogle Scholar
  75. 75.
    D.J. Haxton, Z.Y. Zhang, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 69, 062713 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    J.D. Gorfinkiel, A. Faure, S. Taioli, C. Piccarretta, G. Halmová, J. Tennyson, Eur. Phys. J. D 35, 231 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    D.J. Haxton, T.N. Rescigno, C.W. McCurdy, Phys. Rev. A 72, 022705 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    D.J. Haxton, C.W. McCurdy, T.N. Rescigno, Phys. Rev. A 75, 012710 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    D.J. Haxton, H. Adaniya, D.S. Slaughter, B. Rudek, T. Osipov, T. Weber, T.N. Rescigno, C.W. McCurdy, A. Belkacem, Phys. Rev. A 84, 030701 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    D.S. Slaughter, D.J. Haxton, H. Adaniya, T. Weber, T.N. Rescigno, C.W. McCurdy, A. Belkacem, Phys. Rev. A 87, 052711 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    D.S. Slaughter, H. Adaniya, T.N. Rescigno, D.J. Haxton, A.E. Orel, C.W. McCurdy, A. Belkacem, J. Phys. B 44, 205203 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    N. Douguet, D.S. Slaughter, H. Adaniya, A. Belkacem, A.E. Orel, T.N. Rescigno, PCCP 17, 25621 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    J. Zobel, U. Mayer, K. Jung, H. Ehrhardt, J. Phys. B 29, 813 (1996)ADSCrossRefGoogle Scholar
  84. 84.
    J. Zobel, U. Mayer, K. Jung, H. Ehrhardt, H. Pritchard, C. Winstead, V. McKoy, J. Phys. B 29, 839 (1996)ADSCrossRefGoogle Scholar
  85. 85.
    K. Chakrabarti, J. Tennyson, J. Phys. B 39, 1485 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    S.G. Tilford, J.D. Simmons, J. Phys. Chem. Ref. Data 1, 147 (1972)ADSCrossRefGoogle Scholar
  87. 87.
    G.J. Vázquez, J.M. Amero, H.P. Liebermann, H. Lefebvre-Brion, J. Phys. Chem. A 113, 13395 (2009)CrossRefGoogle Scholar
  88. 88.
    Z. Masin, The UKRMol+ code (2016)Google Scholar
  89. 89.
    D. Darby-Lewis, Z. Masin, J. Tennyson, J. Phys. B (to be submitted) (2016)Google Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of ChemistryNorth Orissa UniversityOdishaIndia
  2. 2.Department of Physics and Astronomy, University College LondonBT LondonUK
  3. 3.Department of MathematicsKolkataIndia

Personalised recommendations