Skip to main content
Log in

A method for calibrating coil constants by using an atomic spin co-magnetometer

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Spin polarized noble gases can precess in an applied magnetic field by referring to Larmor precession, based on which we present a novel method to calibrate magnetic coil constants with hyperpolarized helium-3 by using an atomic spin magnetometer based on potassium. Spin polarized alkali metal atoms can hyperpolarize the helium-3 gas via spin-exchange optical pumping. After several hours of polarization, the polarization of helium-3 goes into a steady state, then optical pumping is stopped to realize a dark state. In such a dark state, the Larmor precession of hyperpolarized helium-3 in an applied magnetic field can be detected by spin-polarized alkali metal atoms, which are not influenced by the additional magnetic field induced by light shift. Through analyzing and extracting this Larmor precession frequency, the magnitude of the applied magnetic field can be obtained. Experimental results show that the residual magnetic field in the magnetic shielding is 5.50 ± 0.05 nT, and the coil constants are 163.02 ± 0.18 nT/mA, 168.22 ± 0.06 nT/mA, and 137.05 ± 0.04 nT/mA in the x, y and z directions, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, Phys. Rev. Lett. 89, 130801 (2002)

    Article  ADS  Google Scholar 

  2. B. Patton, E. Zhivun, D.C. Hovde, D. Budker, Phys. Rev. Lett. 113, 013001 (2014)

    Article  ADS  Google Scholar 

  3. M. Tsuchida, T. Oida, T. Kobayashi, Electron. Commun. Jpn 96, 49 (2013)

    Article  Google Scholar 

  4. R.K. Ghosh, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 2009

  5. Y. Ito, H. Ohnishi, K. Kamada, T. Kobayashi, IEEE Trans. Magn. 47, 3550 (2011)

    Article  ADS  Google Scholar 

  6. I. Savukov, T. Karaulanov, J. Magn. Resonance 231, 39 (2013)

    Article  ADS  Google Scholar 

  7. H.B. Dang, A.C. Maloof, M.V. Romalis, Appl. Phys. Lett. 97, 151110 (2010)

    Article  ADS  Google Scholar 

  8. D. Sheng, S. Li, N. Dural, M.V. Romalis, Phys. Rev. Lett. 110, 160802 (2013)

    Article  ADS  Google Scholar 

  9. T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe, Biomed. Opt. Express 3, 981 (2012)

    Article  Google Scholar 

  10. R. Wyllie, M. Kauer, G.S. Smetana, R.T. Wakai, T.G. Walker, Phys. Med. Biol. 57, 2619 (2012)

    Article  Google Scholar 

  11. J.M. Brown, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 2011

  12. L. Moi, S. Cartaleva, Europhys. News 43, 24 (2012)

    Article  ADS  Google Scholar 

  13. D.H. Ren, L.Q. Wu, M.Z. Yan, M.Y. Cui, Z. You, M.Z. Hu, Sensors 9, 6951 (2009)

    Article  Google Scholar 

  14. C.C. Lu, J. Huang, P.K. Chiu, S.L. Chiu, J.T. Jeng, Sensors 14, 13815 (2014)

    Article  Google Scholar 

  15. H. Zhang, S. Zou, X.-Y. Chen, W. Quan, J. Sensors 2015, 491746 (2015)

    Google Scholar 

  16. H.U. Auster, K.H. Glassmeier, W. Magnes, O. Aydogar, W. Baumjohann, D. Constantinescu, D. Fischer, K.H. Fornacon, E. Georgescu, P. Harvey, O. Hillenmaier, R. Kroth, M. Ludlam, Y. Narita, R. Nakamura, K. Okrafka, F. Plaschke, I. Richter, H. Schwarzl, B. Stoll, A. Valavanoglou, M. Wiedemann, Space Sci. Rev. 141, 235 (2008)

    Article  ADS  Google Scholar 

  17. K. Pajunpää, E. Klimovich, V. Korepanov, P. Posio, H. Nevanlinna, W. Schmidt, M. Genzer, A.M. Harri, A. Lourenço, Geophysica 43, 59 (2007)

    ADS  Google Scholar 

  18. J.D. Quirk, Y.V. Chang, D.A. Yablonskiy, Magn. Resonance Med. 73, 1252 (2015)

    Article  Google Scholar 

  19. M. Salerno, T.A. Altes, J.P. Mugler, M. Nakatsu, H. Hatabu, E.E. de Lange, Eur. J. Radiol. 40, 33 (2001)

    Article  Google Scholar 

  20. S. Lee, J. Kim, M.K. Moon, K.H. Lee, S.W. Lee, T. Ino, V.R. Skoy, M. Lee, G. Kim, J. Korean Phys. Soc. 62, 419 (2013)

    Article  ADS  Google Scholar 

  21. E. Babcock, S. Mattauch, A. Ioffe, Nucl. Instrum. Methods Phys. Res. Sect. A 625, 43 (2011)

    Article  ADS  Google Scholar 

  22. S.R. Parnell, E. Babcock, K. Nünighoff, M.W.A. Skoda, S. Boag, S. Masalovich, W.C. Chen, R. Georgii, J.M. Wild, C.D. Frost, Nucl. Instrum. Methods Phys. Res. Sect. A 598, 774 (2009)

    Article  ADS  Google Scholar 

  23. S.M. Lee, S.C. Lee, V. Mehrotra, H.J. Kim, H.C. Lee, Bull. Korean Chem. Soc. 33, 511 (2012)

    Article  Google Scholar 

  24. R.K. Ghosh, M.V. Romalis, Phys. Rev. A 81, 043415 (2010)

    Article  ADS  Google Scholar 

  25. T.W. Kornack, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 2005

  26. S. Zou, H. Zhang, X.Y. Chen, Y. Chen, J.C. Fang, J. Opt. Soc. Korea 19, 1 (2015)

    Article  ADS  Google Scholar 

  27. H.C. Koch, G. Bison, Z.D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, Eur. Phys. J. D 69, 262 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zou, S. & Chen, XY. A method for calibrating coil constants by using an atomic spin co-magnetometer. Eur. Phys. J. D 70, 203 (2016). https://doi.org/10.1140/epjd/e2016-70091-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70091-y

Keywords

Navigation