Advertisement

A method for calibrating coil constants by using an atomic spin co-magnetometer

  • Hong Zhang
  • Sheng Zou
  • Xi-Yuan Chen
Regular Article

Abstract

Spin polarized noble gases can precess in an applied magnetic field by referring to Larmor precession, based on which we present a novel method to calibrate magnetic coil constants with hyperpolarized helium-3 by using an atomic spin magnetometer based on potassium. Spin polarized alkali metal atoms can hyperpolarize the helium-3 gas via spin-exchange optical pumping. After several hours of polarization, the polarization of helium-3 goes into a steady state, then optical pumping is stopped to realize a dark state. In such a dark state, the Larmor precession of hyperpolarized helium-3 in an applied magnetic field can be detected by spin-polarized alkali metal atoms, which are not influenced by the additional magnetic field induced by light shift. Through analyzing and extracting this Larmor precession frequency, the magnitude of the applied magnetic field can be obtained. Experimental results show that the residual magnetic field in the magnetic shielding is 5.50 ± 0.05 nT, and the coil constants are 163.02 ± 0.18 nT/mA, 168.22 ± 0.06 nT/mA, and 137.05 ± 0.04 nT/mA in the x, y and z directions, respectively.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, Phys. Rev. Lett. 89, 130801 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    B. Patton, E. Zhivun, D.C. Hovde, D. Budker, Phys. Rev. Lett. 113, 013001 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    M. Tsuchida, T. Oida, T. Kobayashi, Electron. Commun. Jpn 96, 49 (2013)CrossRefGoogle Scholar
  4. 4.
    R.K. Ghosh, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 2009Google Scholar
  5. 5.
    Y. Ito, H. Ohnishi, K. Kamada, T. Kobayashi, IEEE Trans. Magn. 47, 3550 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    I. Savukov, T. Karaulanov, J. Magn. Resonance 231, 39 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    H.B. Dang, A.C. Maloof, M.V. Romalis, Appl. Phys. Lett. 97, 151110 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    D. Sheng, S. Li, N. Dural, M.V. Romalis, Phys. Rev. Lett. 110, 160802 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe, Biomed. Opt. Express 3, 981 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Wyllie, M. Kauer, G.S. Smetana, R.T. Wakai, T.G. Walker, Phys. Med. Biol. 57, 2619 (2012)CrossRefGoogle Scholar
  11. 11.
    J.M. Brown, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 2011Google Scholar
  12. 12.
    L. Moi, S. Cartaleva, Europhys. News 43, 24 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D.H. Ren, L.Q. Wu, M.Z. Yan, M.Y. Cui, Z. You, M.Z. Hu, Sensors 9, 6951 (2009)CrossRefGoogle Scholar
  14. 14.
    C.C. Lu, J. Huang, P.K. Chiu, S.L. Chiu, J.T. Jeng, Sensors 14, 13815 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, S. Zou, X.-Y. Chen, W. Quan, J. Sensors 2015, 491746 (2015)Google Scholar
  16. 16.
    H.U. Auster, K.H. Glassmeier, W. Magnes, O. Aydogar, W. Baumjohann, D. Constantinescu, D. Fischer, K.H. Fornacon, E. Georgescu, P. Harvey, O. Hillenmaier, R. Kroth, M. Ludlam, Y. Narita, R. Nakamura, K. Okrafka, F. Plaschke, I. Richter, H. Schwarzl, B. Stoll, A. Valavanoglou, M. Wiedemann, Space Sci. Rev. 141, 235 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    K. Pajunpää, E. Klimovich, V. Korepanov, P. Posio, H. Nevanlinna, W. Schmidt, M. Genzer, A.M. Harri, A. Lourenço, Geophysica 43, 59 (2007)ADSGoogle Scholar
  18. 18.
    J.D. Quirk, Y.V. Chang, D.A. Yablonskiy, Magn. Resonance Med. 73, 1252 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Salerno, T.A. Altes, J.P. Mugler, M. Nakatsu, H. Hatabu, E.E. de Lange, Eur. J. Radiol. 40, 33 (2001)CrossRefGoogle Scholar
  20. 20.
    S. Lee, J. Kim, M.K. Moon, K.H. Lee, S.W. Lee, T. Ino, V.R. Skoy, M. Lee, G. Kim, J. Korean Phys. Soc. 62, 419 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    E. Babcock, S. Mattauch, A. Ioffe, Nucl. Instrum. Methods Phys. Res. Sect. A 625, 43 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    S.R. Parnell, E. Babcock, K. Nünighoff, M.W.A. Skoda, S. Boag, S. Masalovich, W.C. Chen, R. Georgii, J.M. Wild, C.D. Frost, Nucl. Instrum. Methods Phys. Res. Sect. A 598, 774 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    S.M. Lee, S.C. Lee, V. Mehrotra, H.J. Kim, H.C. Lee, Bull. Korean Chem. Soc. 33, 511 (2012)CrossRefGoogle Scholar
  24. 24.
    R.K. Ghosh, M.V. Romalis, Phys. Rev. A 81, 043415 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    T.W. Kornack, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 2005Google Scholar
  26. 26.
    S. Zou, H. Zhang, X.Y. Chen, Y. Chen, J.C. Fang, J. Opt. Soc. Korea 19, 1 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H.C. Koch, G. Bison, Z.D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, Eur. Phys. J. D 69, 262 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education, Southeast UniversityNanjingP.R. China
  2. 2.School of Instrument Science and Engineering, Southeast UniversityNanjingP.R. China

Personalised recommendations