The HO2 + (H2O)n + O3 reaction: an overview and recent developments

Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions (7th International Symposium)

Abstract

The present work is concerned with the reaction of the hydroperoxyl radical with ozone, which is key in the atmosphere. We first give a brief overview which emphasizes theoretical work developed at the authors’ Group, considering not only the naked reaction (n = 0) but also the reaction with one water molecule added to the reactants (n = 1). Aiming at a broad and contextual understanding of the role of water, we have also very recently published the results of the investigation considering the addition of water dimers (n = 2) and trimers (n = 3) to the reactants. Such results are also succinctly addressed before we present our latest and unpublished research endeavors. These consist of two items: the first one addresses a new mechanistic pathway for hydrogen-abstraction in n = 2–4 cases, in which we observe a Grotthuss-like hydrogen shuttling mechanism that interconverts covalent and hydrogen bonds (water molecules are no longer spectators); the second addresses our exploratory calculations of the HO2 + O3 reaction inside a (H2O)20 water cage, where we strive to give a detailed insight of the molecular processes behind the uptake of gas-phase molecules by a water droplet.

Graphical abstract

Keywords

Ozone Water Molecule Water Droplet Reaction Path Cloud Droplet 

Supplementary material

References

  1. 1.
    P.O. Wennberg, R.C. Cohen, R.M. Stimpfle, J.P. Koplow, J.G. Anderson, R.J. Salawitch, D.W. Fahey, E.L. Woodbridge, E.R. Keim, R.S. Gao, C.R. Webster, R.D. May, D.W. Toohey, L.M. Avallone, M.H. Proffitt, M. Loewenstein, J.R. Podolske, K.R. Chan, S.C. Wofsy, Science 266, 398 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    R. Simonaitis, J. Heicklen, J. Phys. Chem. 77, 1932 (1973)CrossRefGoogle Scholar
  3. 3.
    W.B. DeMore, E. Tschuikow-Roux, J. Phys. Chem. 78, 1447 (1974)CrossRefGoogle Scholar
  4. 4.
    M.S. Zahniser, C.J. Howard, J. Chem. Phys. 73, 1620 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    E.R. Manzanares, M. Suto, L.C. Lee, D. Coffey Jr., J. Chem. Phys. 85, 5027 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    A. Sinha, E.R. Lovejoy, C.J. Howard, J. Chem. Phys. 87, 2122 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    X. Wang, M. Suto, L.C. Lee, J. Chem. Phys. 88, 896 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    D.D. Nelson, M.S. Zahniser, J. Phys. Chem. 98, 2101 (1994)CrossRefGoogle Scholar
  9. 9.
    S.A. Nizkorodov, W.W. Harper, B.W. Blackmon, D.J. Nesbitt, J. Phys. Chem. A 104, 3964 (2000)CrossRefGoogle Scholar
  10. 10.
    S.C. Herndon, P.W. Villalta, D.D. Nelson, J.T. Wayne, M.S. Zahniser, J. Phys. Chem. A 105, 1583 (2001)CrossRefGoogle Scholar
  11. 11.
    A.J.C. Varandas, L. Zhang, Chem. Phys. Lett. 385, 409 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A. Mansergas, J.M. Anglada, J. Phys. Chem. A 111, 976 (2007)CrossRefGoogle Scholar
  13. 13.
    Z.F. Xu, M.C. Lin, Chem. Phys. Lett. 440, 12 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    L.P. Viegas, A.J.C. Varandas, J. Chem. Theory Comput. 6, 412 (2010)CrossRefGoogle Scholar
  15. 15.
    L.P. Viegas, A. Branco, A.J.C. Varandas, J. Chem. Theory Comput. 6, 2751 (2010)CrossRefGoogle Scholar
  16. 16.
    J.C. Hansen, J.S. Francisco, ChemPhysChem 3, 833 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Hernández-Soto, F. Weinhold, J.S. Francisco, J. Chem. Phys. 127, 164102 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    S. Aloisio, J.S. Francisco, Acc. Chem. Res. 33, 825 (2000)CrossRefGoogle Scholar
  19. 19.
    E.J. Hamilton, J. Chem. Phys. 63, 3682 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    E.J. Hamilton, C.A. Naleway, J. Phys. Chem. 80, 2037 (1976)CrossRefGoogle Scholar
  21. 21.
    R.A. Cox, J.P. Burrows, J. Phys. Chem. 83, 2560 (1979)CrossRefGoogle Scholar
  22. 22.
    W.B. Demore, J. Phys. Chem. 83, 1113 (1979)CrossRefGoogle Scholar
  23. 23.
    C.C. Kircher, S.P. Sander, J. Phys. Chem. 88, 2082 (1984)CrossRefGoogle Scholar
  24. 24.
    B. Nelander, J. Phys. Chem. A 101, 9092 (1997)CrossRefGoogle Scholar
  25. 25.
    S. Aloisio, J.S. Francisco, J. Phys. Chem. A 102, 1899 (1998)CrossRefGoogle Scholar
  26. 26.
    S. Aloisio, Y. Li, J.S. Francisco, J. Chem. Phys. 110, 9017 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    S. Aloisio, J.S. Francisco, J. Phys. Chem. A 104, 6597 (2000)CrossRefGoogle Scholar
  28. 28.
    R.S. Zhu, M.C. Lin, Chem. Phys. Lett. 354, 217 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    R.C. Dunn, J.D. Simon, J. Am. Chem. Soc. 114, 4856 (1992)CrossRefGoogle Scholar
  30. 30.
    G. Frost, V. Vaida, J. Geophys. Res. 100, 18803 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    F.M. Tao, K. Higgins, W. Klemperer, D.D. Nelson, Geophys. Res. Lett. 23, 1797 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    E.T. Aaltonen, J.S. Francisco, J. Phys. Chem. A 107, 1216 (2003)CrossRefGoogle Scholar
  33. 33.
    V. Vaida, H.G. Kjaergaard, P.E. Hintze, D.J. Donaldson, Science 299, 1566 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    T. Uchimaru, S. Tsuzuki, M. Sugie, K. Tokuhashi, A. Sekiya, Chem. Phys. Lett. 396, 110 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    P.G. Sennikov, S.K. Ignatov, O. Schrems, ChemPhysChem 6, 392 (2005)CrossRefGoogle Scholar
  36. 36.
    M.A. Allodi, M.E. Dunn, J. Livada, K.N. Kirschner, G.C. Shields, J. Phys. Chem. A 110, 13283 (2006)CrossRefGoogle Scholar
  37. 37.
    E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J.S. Francisco, J. Troe, B. Abel, Science 315, 497 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Anglada, J. González, ChemPhysChem 10, 3034 (2009)CrossRefGoogle Scholar
  39. 39.
    R. Steudel, Y. Steudel, J. Phys. Chem. A 114, 4437 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Gonzalez, M. Torrent-Sucarrat, J.M. Anglada, Phys. Chem. Chem. Phys. 12, 2116 (2010)CrossRefGoogle Scholar
  41. 41.
    J. Gonzalez, J.M. Anglada, J. Phys. Chem. A 114, 9151 (2010)CrossRefGoogle Scholar
  42. 42.
    J. Gonzalez, M. Caballero, A. Aguilar-Mogas, M. Torrent-Sucarrat, R. Crehuet, A. Solé, X. Giménez, S. Olivella, J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 128, 579 (2011)CrossRefGoogle Scholar
  43. 43.
    V. Vaida, J. Chem. Phys. 135, 020901 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    M.T.C. Martins-Costa, J.M. Anglada, J.S. Francisco, M.F. Ruiz-López, Angew. Chem. Int. Ed. 51, 5413 (2012)CrossRefGoogle Scholar
  45. 45.
    M.T.C. Martins-Costa, J.M. Anglada, J.S. Francisco, M.F. Ruiz-López, J. Am. Chem. Soc. 134, 11821 (2012)CrossRefGoogle Scholar
  46. 46.
    J.M. Anglada, M.T.C. Martins-Costa, M.F. Ruiz-López, J.S. Francisco, Proc. Natl. Acad. Sci. USA 111, 11618 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    A.J.C. Varandas, L.P. Viegas, Comput. Theoret. Chem. 965, 291 (2011)CrossRefGoogle Scholar
  48. 48.
    L.P. Viegas, A.J.C. Varandas, Chem. Phys. 399, 17 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    L.P. Viegas, A.J.C. Varandas, J. Chem. Phys. 136, 114312 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    L.P. Viegas, A.J.C. Varandas, J. Comput. Chem. 35, 507 (2014)CrossRefGoogle Scholar
  51. 51.
    A. Lenz, L. Ojamäe, J. Chem. Phys. 131, 134302 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    K. Pfeilsticker, A. Lotter, C. Peters, H. Bosch, Science 300, 2078 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    M.E. Dunn, E.K. Pokon, G.C. Shields, J. Am. Chem. Soc. 126, 2647 (2004)CrossRefGoogle Scholar
  54. 54.
    N. Goldman, R.S. Fellers, C. Leforestier, R.J. Saykally, J. Phys. Chem. A 105, 515 (2001)CrossRefGoogle Scholar
  55. 55.
    J.M. Anglada, G.J. Hoffman, L.V. Slipchenko, M.M. Costa, M.F. Ruiz-López, J.S. Francisco, J. Phys. Chem. A 117, 10381 (2013)CrossRefGoogle Scholar
  56. 56.
    F.N. Keutsch, R.J. Saykally, Proc. Natl. Acad. Sci. 98, 10533 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    R.M. Shields, B. Temelso, K.A. Archer, T.E. Morrell, G.C. Shields, J. Phys. Chem. A 114, 11725 (2010)CrossRefGoogle Scholar
  58. 58.
    P. Miró, C.J. Cramer, Phys. Chem. Chem. Phys. 15, 1837 (2013)CrossRefGoogle Scholar
  59. 59.
    J.C. Howard, G.S. Tschumper, WIREs Comput. Mol. Sci. 4, 199 (2014)CrossRefGoogle Scholar
  60. 60.
    J. Hernández-Rojas, D.J. Wales, Chem. Phys. 444, 23 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    E.A. Cobar, P.R. Horn, R.G. Bergman, M. Head-Gordon, Phys. Chem. Chem. Phys. 14, 15328 (2012)CrossRefGoogle Scholar
  62. 62.
    I.M.B. Nielsen, E.T. Seidl, C.L. Janssen, J. Chem. Phys. 110, 9435 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    F.N. Keutsch, J.D. Cruzan, R.J. Saykally, Chem. Rev. 103, 2533 (2003)CrossRefGoogle Scholar
  64. 64.
    J.A. Anderson, K. Crager, L. Fedoroff, G.S. Tschumper, J. Chem. Phys. 121, 11023 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    L.P. Viegas, A.J.C. Varandas, J. Phys. Chem. B. Doi:  http://dx.doi.org/10.1021/acs.jpcb.5b07691 (2015)
  66. 66.
    S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, J. Phys. Chem. A 105, 10525 (2001)CrossRefGoogle Scholar
  67. 67.
    G.S. Fanourgakis, E. Aprà, S.S. Xantheas, J. Chem. Phys. 121, 2655 (2004)ADSCrossRefGoogle Scholar
  68. 68.
    G.S. Fanourgakis, E. Aprà, W.A. de Jong, S.S. Xantheas, J. Chem. Phys. 122, 134304 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    A. Lenz, L. Ojamäe, Phys. Chem. Chem. Phys. 7, 1905 (2005)CrossRefGoogle Scholar
  70. 70.
    A. Lenz, L. Ojamäe, Chem. Phys. Lett. 418, 361 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    A.M. Tokmachev, A.L. Tchougréeff, R. Dronskowski, Chem. Phys. Chem. 11, 384 (2010)Google Scholar
  72. 72.
    M. Torrent-Sucarrat, M.F. Ruiz-López, M. Martins-Costa, J.S. Francisco, J.M. Anglada, Chem. Eur. J. 17, 5076 (2011)CrossRefGoogle Scholar
  73. 73.
    S. Iwata, Phys. Chem. Chem. Phys. 16, 1837 (2014)CrossRefGoogle Scholar
  74. 74.
    Q. Shi, S.D. Blair, J.S. Francisco, S. Kais, Proc. Natl. Acad. Sci. 100, 9686 (2003)ADSCrossRefGoogle Scholar
  75. 75.
    S.D. Belair, H. Hernandez, J.S. Francisco, J. Am. Chem. Soc. 126, 3024 (2004)CrossRefGoogle Scholar
  76. 76.
    S. Du, J.S. Francisco, J. Phys. Chem. A 112, 4826 (2008)CrossRefGoogle Scholar
  77. 77.
    D.J. Jacob, Atmos. Environ. 34, 2131 (2000)ADSCrossRefGoogle Scholar
  78. 78.
    M. Kulmala, Science 302, 1000 (2003)CrossRefGoogle Scholar
  79. 79.
    R. Zhang, A. Khalizov, L. Wang, M. Hu, W. Xu, Chem. Rev. 112, 1957 (2012)CrossRefGoogle Scholar
  80. 80.
    M. Kulmala et al., Science 339, 943 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    D.A. Knopf, P.A. Alpert, Faraday Discuss. 165, 513 (2013)ADSCrossRefGoogle Scholar
  82. 82.
    J.P. Perdew, K. Schmidt, in Density Functional Theory and Its Application to Materials, edited by V. Van Doren, C. Van Alsenoy, P. Geerlings (AIP, Melville, New York, 2001), pp. 1–20Google Scholar
  83. 83.
    J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, J. Chem. Phys. 123, 062201 (2005)ADSCrossRefGoogle Scholar
  84. 84.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993)ADSCrossRefGoogle Scholar
  85. 85.
    A.D. Boese, J.M.L. Martin, J. Chem. Phys. 121, 3405 (2004)ADSCrossRefGoogle Scholar
  86. 86.
    R.G. Parr, W. Yang, Density-Functional Theory Of Atoms and Molecules (Oxford University Press, New York, 1989)Google Scholar
  87. 87.
    I.N. Levine, in Quantum Chemistry (Prentice-Hall, New Jersey, USA, 2000), p. 581, 5th edn.Google Scholar
  88. 88.
    J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)ADSCrossRefGoogle Scholar
  89. 89.
    S. Patchkovskii, T. Ziegler, J. Chem. Phys. 116, 7806 (2002)ADSCrossRefGoogle Scholar
  90. 90.
    M.W. Schmidt, K.K. Baldridge, J.A. Boats, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  91. 91.
    A.J.C. Varandas, Int. Rev. Phys. Chem. 19, 199 (2000)CrossRefGoogle Scholar
  92. 92.
    H.G. Yu, A.J.C. Varandas, Chem. Phys. Lett. 334, 173 (2001)ADSCrossRefGoogle Scholar
  93. 93.
    A.J.C. Varandas, J. Chem. Theory Comput. 8, 428 (2012)CrossRefGoogle Scholar
  94. 94.
    L.P. Viegas, D. Carolina, A.J.C. Varandas, Chem. Phys. Lett. 620, 61 (2015)ADSCrossRefGoogle Scholar
  95. 95.
    P.C. do Couto, R.C. Guedes, B.J.C. Cabral, J.A.M. Simões, J. Chem. Phys. 119, 7344 (2003)ADSCrossRefGoogle Scholar
  96. 96.
    S. Du, J.S. Francisco, G.K. Schenter, T.D. Iordanov, B.C. Garret, M. Dupuis, J. Li, J. Chem. Phys. 124, 224318 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    S. Du, J.S. Francisco, G.K. Schenter, B.C. Garret, J. Chem. Phys. 128, 084307 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    K. Tsuji, K. Shibuya, J. Phys. Chem. A 113, 9945 (2009)CrossRefGoogle Scholar
  99. 99.
    G.J. Hoffman, P.K. Gurunathan, J.S. Francisco, L.V. Slipchenko, J. Chem. Phys. 141, 104315 (2014)ADSCrossRefGoogle Scholar
  100. 100.
    K.S. Alongi, T.S. Dibble, G.C. Shields, K.N. Kirschner, J. Phys. Chem. A 110, 3686 (2006)CrossRefGoogle Scholar
  101. 101.
    H. Tachikawa, S. Abe, Phys. Chem. Chem. Phys. 12, 3904 (2010)CrossRefGoogle Scholar
  102. 102.
    S. Aloisio, J.S. Francisco, J. Am. Chem. Soc. 121, 8592 (1999)CrossRefGoogle Scholar
  103. 103.
    S. Chalmet, M.F. Ruiz-López, ChemPhysChem 7, 463 (2006)CrossRefGoogle Scholar
  104. 104.
    A.J.C. Varandas, Int. J. Quantum Chem. 114, 1327 (2014)CrossRefGoogle Scholar
  105. 105.
    L. Vereecken, J.S. Francisco, Chem. Soc. Rev. 41, 6259 (2012)CrossRefGoogle Scholar
  106. 106.
    A. Hassanali, M.K. Prakash, H. Eshet, M. Parrinello, Proc. Natl. Acad. Sci. 108, 20410 (2011)ADSCrossRefGoogle Scholar
  107. 107.
    V.A. Ermoshin, A.L. Sobolewski, W. Domcke, Chem. Phys. Lett. 356, 556 (2002)ADSCrossRefGoogle Scholar
  108. 108.
    A.L. Sobolewski, W. Domcke, J. Phys. Chem. A 106, 4158 (2002)CrossRefGoogle Scholar
  109. 109.
    A.L. Sobolewski, W. Domcke, Phys. Chem. Chem. Phys. 4, 4 (2002)CrossRefGoogle Scholar
  110. 110.
    A.L. Sobolewski, W. Domcke, Phys. Chem. Chem. Phys. 9, 3818 (2007)CrossRefGoogle Scholar
  111. 111.
    S.K. Chulkov, N.F. Stepanov, Y.V. Novakovskaya, Russ. J. Phys. Chem. A 83, 798 (2009)CrossRefGoogle Scholar
  112. 112.
    E. Codorniu-Hernández, P.G. Kusalik, Proc. Natl. Acad. Sci. 110, 13697 (2013)ADSCrossRefGoogle Scholar
  113. 113.
    C.J.D. von Grotthuss, Ann. Chim. LVIII, 54 (1806)Google Scholar
  114. 114.
    N. Agmon, Chem. Phys. Lett. 244, 456 (1995)ADSCrossRefGoogle Scholar
  115. 115.
    A.A. Kornyshev, A.M. Kuznetsov, E. Spohr, J. Ulstrup 107, 3351 (2003)Google Scholar
  116. 116.
    M.E. Tuckerman, A. Chandra, D. Marx, Acc. Chem. Res. 39, 151 (2006)CrossRefGoogle Scholar
  117. 117.
    D. Marx, ChemPhysChem 7, 1848 (2006)CrossRefGoogle Scholar
  118. 118.
    J. Han, X. Zhou, H. Liu, J. Power Sources 161, 1420 (2006)CrossRefGoogle Scholar
  119. 119.
    X. Wu, W. Thiel, S. Pezeshki, H. Lin, J. Chem. Theory Comput. 9, 2672 (2013)CrossRefGoogle Scholar
  120. 120.
    A. Hassanali, F. Giberti, J. Cuny, T.D. Kühne, M. Parrinello, Proc. Natl. Acad. Sci. 110, 13723 (2013)ADSCrossRefGoogle Scholar
  121. 121.
    D.R. Hanson, A.R. Ravishankara, S. Solomon, J. Geophys. Res. 99, 3615 (1994)ADSCrossRefGoogle Scholar
  122. 122.
    G. Bravo-Pérez, H. Saint-Martin, Int. J. Quantum Chem. 112, 3655 (2012)CrossRefGoogle Scholar
  123. 123.
    C.C. Pradzynski, C.W. Dierking, F. Zurheide, R.M. Forck, U. Buck, T. Zeuch, S.S. Xantheas, Phys. Chem. Chem. Phys. 16, 26691 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centro de Química and Departamento de Química, Universidade de CoimbraCoimbraPortugal

Personalised recommendations