Autoionization following nanoplasma formation in atomic and molecular clusters

  • Bernd Schütte
  • Jan Lahl
  • Tim Oelze
  • Maria Krikunova
  • Marc J.J. Vrakking
  • Arnaud Rouzée
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions (7th International Symposium)

Abstract

Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters.

Graphical abstract

Keywords

Average Cluster Size Intense Laser Pulse Thermal Electron Emission Atomic Krypton Autoionization Process 

References

  1. 1.
    T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, M.D. Perry, Phys. Rev. A 53, 3379 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    T. Laarmann et al., Phys. Rev. Lett. 95, 063402 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    C. Bostedt et al., Phys. Rev. Lett. 100, 133401 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hoener, C. Bostedt, H. Thomas, L. Landt, E. Eremina, H. Wabnitz, T. Laarmann, R. Treusch, A.R.B. de Castro, T. Moeller, J. Phys. B 41, 181001 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    T. Tachibana et al., Sci. Rep. 5, 10977 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Sivis, C. Ropers, Phys. Rev. Lett. 111, 085001 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Ostrikov, E.C. Neyts, M. Meyyappan, Adv. Phys. 62, 113 (2013)CrossRefGoogle Scholar
  8. 8.
    D.D. Hickstein et al., Phys. Rev. Lett. 112, 115004 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    B.F. Murphy et al., Nat. Commun. 5, 4281 (2014)ADSGoogle Scholar
  10. 10.
    U. Saalmann, C. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    B. Schütte, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 073003 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    B. Schütte, F. Campi, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 253401 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    B. Schütte, T. Oelze, M. Krikunova, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, New J. Phys. 17, 033043 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    T. Ditmire, T. Donnelly, R.W. Falcone, M.D. Perry, Phys. Rev. Lett. 75, 3122 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    L. Schroedter et al., Phys. Rev. Lett. 112, 183401 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    B. Schütte, J. Lahl, T. Oelze, M. Krikunova, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 114, 123002 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    B. Schütte, M.J.J. Vrakking, A. Rouzée, J. Phys.: Conf. Ser. 635, 102005 (2015)ADSGoogle Scholar
  19. 19.
    B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A.I. Kuleff, M.J.J. Vrakking, A. Rouzée, Nat. Commun. 6, 8596 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A.I. Kuleff, M.J.J. Vrakking, A. Rouzée, J. Phys.: Conf. Ser. 635, 012025 (2015)ADSGoogle Scholar
  21. 21.
    G. Gademann, F. Plé, P.M. Paul, M.J.J. Vrakking, Opt. Express 19, 24922 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    O.F. Hagena, W. Obert, J. Chem. Phys. 56, 1793 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    R.A. Smith, T. Ditmire, J.W.G. Tisch, Rev. Sci. Instrum. 69, 3798 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    M.J.J. Vrakking, Rev. Sci. Instrum. 72, 4084 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    U. Frühling et al., Nature Photon. 3, 523 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    B. Schütte, U. Frühling, M. Wieland, A. Azima, M. Drescher, Opt. Express 19, 18833 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    J. Hebling, G. Almási, I.Z. Kozma, J. Kuhl, Opt. Express 10, 1161 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    Y.L. Shao, T. Ditmire, J.W.G. Tisch, E. Springate, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. Lett. 77, 3343 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    V. Kumarappan, M. Krishnamurthy, D. Mathur, Phys. Rev. A 66, 033203 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    E. Springate, S.A. Aseyev, S. Zamith, M.J.J. Vrakking, Phys. Rev. A 68, 053201 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    G.M. Lawrence, Phys. Rev. A 2, 397 (1970)ADSCrossRefGoogle Scholar
  35. 35.
    P.M. Dehmer, J. Berkowitz, W.A. Chupka, J. Chem. Phys. 59, 5777 (1973)ADSCrossRefGoogle Scholar
  36. 36.
    P.M. Dehmer, W.L. Luken, W.A. Chupka, J. Chem. Phys. 67, 195 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    R. Feifel, J.H.D. Eland, D. Edvardsson, J. Chem. Phys. 122, 144308 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    A.S. Sandhu et al., Science 322, 1081 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.1), National Institute of Standards and Technology, Gaithersburg, MD (2013), Available: http://physics.nist.gov/asd (2014, September 8)Google Scholar
  40. 40.
    T. Fennel, L. Ramunno, T. Brabec, Phys. Rev. Lett. 99, 233401 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bernd Schütte
    • 1
    • 2
  • Jan Lahl
    • 3
    • 4
  • Tim Oelze
    • 3
  • Maria Krikunova
    • 3
  • Marc J.J. Vrakking
    • 1
  • Arnaud Rouzée
    • 1
  1. 1.Max-Born-InstitutBerlinGermany
  2. 2.Department of PhysicsImperial College LondonAZ LondonUK
  3. 3.Institut für Optik und Atomare Physik, Technische Universität BerlinBerlinGermany
  4. 4.Lund UniversityLundSweden

Personalised recommendations