Entanglement in helium atom confined in an impenetrable cavity

Regular Article

Abstract

We explore ground-state entanglement properties of helium atom confined at the center of an impenetrable spherical cavity of varying radius by using explicitly correlated Hylleraas-type basis set. Results for the dependencies of the von Neumann and linear entanglement entropic measures on the cavity radius are discussed in details. Some highly accurate numerical results for the von Neumann and linear entropy are reported for the first time. It is found that the transition to the strong confinement regime is manifested by the entropies as an appearance of the inflection points on their variations.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  2. 2.
    G. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004) CrossRefADSGoogle Scholar
  3. 3.
    G. Manfredi, M.R. Feix, Phys. Rev. E 62, 4665 (2000) CrossRefADSGoogle Scholar
  4. 4.
    C.H. Lin, Y.K. Ho, Few Body Syst. 55, 1141 (2014) CrossRefGoogle Scholar
  5. 5.
    Y.C. Lin, C.Y. Lin, Y.K. Ho, Phys. Rev. A 87, 022316 (2013) CrossRefADSGoogle Scholar
  6. 6.
    C.H. Lin, C.Y. Lin, Y.K. Ho, Few Body Syst. 54, 2147 (2013) CrossRefADSGoogle Scholar
  7. 7.
    Y.C. Lin, Y.K. Ho, Phys. Lett. A 378, 2861 (2014) CrossRefADSMATHGoogle Scholar
  8. 8.
    D. Manzano, A.R. Plastino, J.S. Dehesa, T. Koga, J. Phys. A 43, 275301 (2010) MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    J.S. Dehesa et al., J. Phys. B 45, 015504 (2012) CrossRefADSGoogle Scholar
  10. 10.
    J.S. Dehesa et al., J. Phys. B 45, 239501 (2012) CrossRefADSGoogle Scholar
  11. 11.
    G. Benenti, S. Siccardi, G. Strini, Eur. Phys. J. D 67, 83 (2013)CrossRefADSGoogle Scholar
  12. 12.
    P. Kościk, A. Okopińska, Few Body Syst. 55, 1151 (2014) CrossRefGoogle Scholar
  13. 13.
    J.P. Restrepo Cuartas, J.L. Sanz-Vicario, Phys. Rev. A 91, 052301 (2015) CrossRefADSGoogle Scholar
  14. 14.
    C.H. Lin, Y.K. Ho, Few Body Syst. 56, 157 (2015)CrossRefADSGoogle Scholar
  15. 15.
    S. López-Rosa et al., J. Phys. B: At. Mol. Opt. Phys. 48, 175002 (2015) CrossRefADSGoogle Scholar
  16. 16.
    Y.C. Lin, Y.K. Ho, Can. J. Phys. 93, 646-653 (2015)CrossRefADSGoogle Scholar
  17. 17.
    J. P. Coe, A. Sudbery, I. D’Amico, Phys. Rev. B 77, 205122 (2008) CrossRefADSGoogle Scholar
  18. 18.
    P. Kościk, Phys. Lett. A 377, 2393 (2013) MathSciNetCrossRefADSMATHGoogle Scholar
  19. 19.
    Y.C. Lin, T.K. Fang, Y.K. Ho, Phys. Plasma. 22, 032113 (2015) CrossRefADSGoogle Scholar
  20. 20.
    P. Kościk, J. K. Saha, Few Body Systems 56, 645 (2015)CrossRefADSGoogle Scholar
  21. 21.
    M. Tichy, F. Mintert, A. Buchleitner, J. Phys. B 44, 192001 (2011) CrossRefADSGoogle Scholar
  22. 22.
    A.I. Akhiezer et al., Plasma Electrodynamics, in Linear Response Theory (Pergamon, Oxford, 1975), Vol. 1 Google Scholar
  23. 23.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982) CrossRefADSGoogle Scholar
  24. 24.
    Y.B. Xu, M.Q. Tan, U. Becker, Phys. Rev. Lett. 76, 3538 (1996) CrossRefADSGoogle Scholar
  25. 25.
    L.G. Jiao, Y.K. Ho, in Electronic Structure of Quantum Confined Atoms and Molecules, edited by K.D. Sen (Springer Int. Pub. Switzerland, 2014), p. 145Google Scholar
  26. 26.
    A. Michels, J. de Boer, A. Bijl, Physica 4, 981 (1937)CrossRefADSGoogle Scholar
  27. 27.
    Solvation Effects on Molecules and Biomolecules, Computational Methods and Applications, edited by S. Canuto (Springer, Berlin, 2008)Google Scholar
  28. 28.
    J. Sabin, E. Brandas, Adv. Quan. Chem. 57, 1-334 (2009) CrossRefGoogle Scholar
  29. 29.
    S. Bhattacharyya, J.K. Saha, P.K. Mukherjee, T.K. Mukherjee, Phys. Scr. 87, 065305 (2013) CrossRefADSGoogle Scholar
  30. 30.
    T. Guillot, Planet Space Sci. 47, 1183 (1999) CrossRefADSGoogle Scholar
  31. 31.
    P.A. Jacobs, Carboniogenic Activity of Zeolites (Elsevier, Amsterdam, 1997)Google Scholar
  32. 32.
    S. Bhattacharyya, J.K. Saha, T.K. Mukherjee, Phys. Rev. A 91, 042515 (2015) CrossRefADSGoogle Scholar
  33. 33.
    N. Aquino, A. Flores-Riveros, J.F. Rivas-Silva, Phys. Lett. A 307, 326 (2003) CrossRefADSMATHGoogle Scholar
  34. 34.
    H.E. Montgomery Jr., N. Aquino, A. Flores-Riveros, Phys. Lett. A 374, 2044 (2010) CrossRefADSMATHGoogle Scholar
  35. 35.
    A. Flores-Riveros, N. Aquino, H.E. Montgomery Jr., Phys. Lett. A 374, 1246 (2010) Google Scholar
  36. 36.
    A. Flores-Riveros, A. Rodriguez-Contreras, Phys. Lett. A 372, 6175 (2008) CrossRefADSMATHGoogle Scholar
  37. 37.
    C.L. Wilson, H.E. Montgomery Jr., K.D. Sen, D.C. Thompson, Phys. Lett. A 374, 4415 (2010) CrossRefADSMATHGoogle Scholar
  38. 38.
    H.E. Montgomery Jr., V.I. Pupyshev, Phys. Lett. A 377, 2880 (2013) CrossRefADSGoogle Scholar
  39. 39.
    C. Laughlin, S.I. Chu, J. Phys. A 42, 265004 (2009) MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    E.R. Davidson, J. Chem. Phys. 39, 875 (1964)CrossRefADSGoogle Scholar
  41. 41.
    J. Wang, C.K. Law, M.-C. Chu, Phys. Rev. A 72, 022346 (2005) CrossRefADSGoogle Scholar
  42. 42.
    S. Schröter, H. Friedrich, J. Madroñero, Phys. Rev. A 87, 042507 (2013) CrossRefADSGoogle Scholar
  43. 43.
    E.A. Hylleraas, Z. Phys. 54, 347 (1929), translated in Quantum Chemistry, edited by H. Hettema (World Scientific, Singapore, 2000)CrossRefADSMATHGoogle Scholar
  44. 44.
    K.D. Sen, J. Phys. Chem. 123, 074110 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of PhysicsJan Kochanowski UniversityKielcePoland
  2. 2.Indian Association for the Cultivation of ScienceJadavpur, KolkataIndia

Personalised recommendations