Skip to main content
Log in

Optimal observables to determine entanglement of a two qubit state

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Experimental determination of entanglement is important not only to characterize the state and use it in quantum information, but also in understanding complicated phenomena such as phase transitions. In this paper we show that in many cases, it is possible to determine entanglement of a two qubit state, as represented by concurrence, with a few observables, most of which are local. In particular, rank 1 and rank 2 states need exclusively measurement of local observables while rank 3 states need measurement of just one correlation observable in addition to local observables. Only the rank 4 states are shown to require a more detailed tomography. The analysis also sheds light on the other measure, non separability since it is a lower bound on concurrence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Roman Rietsche, Christian Dremel, … Jan-Marco Leimeister

References

  1. S. Filipp, P. Maurer, P.J. Leek, M. Baur, R. Bianchetti, J.M. Fink, M. Goppl, L. Steffen, J.M. Gambetta, A. Blais, A. Wallraff, Phys. Rev. Lett. 102, 200402 (2009)

    Article  ADS  Google Scholar 

  2. Steffen et al., Science 313, 1423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Vasilyev, S.-K. Choi, P. Kumar, G. Mauro D’Ariano, Phys. Rev. Lett. 84, 2354 (2000)

    Article  ADS  Google Scholar 

  4. K Banaszek, B Cramer, D Gross, New J. Phys. 15, 125020 (2013)

    Article  ADS  Google Scholar 

  5. M. Agnew, J. Leach, M. McLaren, F.S. Roux, R.W. Boyd, Phys. Rev. A 84, 062101 (2011)

    Article  ADS  Google Scholar 

  6. A. Chiuri, L. Mazzola, M. Paternostro, P. Mataloni, New J. Phys. 14, 085006 (2012)

    Article  ADS  Google Scholar 

  7. L. Peng et al., New J. Phys. 15, 125027 (2013)

    Article  Google Scholar 

  8. S.A. Babichev, J. Appel, A.I. Lvovsky, Phys. Rev. Lett. 92, 193601 (2004)

    Article  ADS  Google Scholar 

  9. Roos et al., Science 304, 1478 (2004)

    Article  ADS  Google Scholar 

  10. D. Gross, IEEE Trans. Inform. Theory 57, 1548 (2011)

    Article  MathSciNet  Google Scholar 

  11. J. Řeháčke, B.G. Englert, D. Kaszlikowski, Phys. Rev. A 70, 052321 (2004)

    Article  ADS  Google Scholar 

  12. C. Cinelli, G. Di Nepi, F. De Martini, M. Barbieri, P. Mataloni, Phys. Rev. A 70, 022321 (2004)

    Article  ADS  Google Scholar 

  13. A.M. Souza, M.S. Reis, D.O. Soares-Pinto, I.S. Oliveira, R.S. Sarthour, Phys. Rev. B 77, 104402 (2008)

    Article  ADS  Google Scholar 

  14. J.B. Altepeter, E.R. Jeffrey, P.G. Kwiat, S. Tanzilli, N. Gisin, A. Acin, Phys. Rev. Lett. 95, 033601 (2005)

    Article  ADS  Google Scholar 

  15. G. Tóth, O. Gühne, Phys. Rev. Lett. 94, 060501 (2005)

    Article  ADS  Google Scholar 

  16. S.M. Fei, M.J. Zhao, K. Chen, Z.X. Wang, Phys. Rev. A 80, 032320 (2009)

    Article  ADS  Google Scholar 

  17. Walborn et al., Nature 440, 1022 (2006)

    Article  ADS  Google Scholar 

  18. S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Phys. Rev. A 75, 032338 (2007)

    Article  ADS  Google Scholar 

  19. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  20. P. Horodecki, Phys. Rev. Lett. 90, 167901 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Phys. Rev. A 66, 062305 (2002)

    Article  ADS  Google Scholar 

  22. O. Gühne, P. Hyllus, Int. J. Theor. Phys. 42, 1001 (2003)

    Article  Google Scholar 

  23. I. Sargolzahi, S.Y. Mirafzali, M. Sarbishaei, Quantum Inform. Comput. 11, 0079 (2011)

    MathSciNet  Google Scholar 

  24. Y.S. Teo et al., New J. Phys. 14, 105020 (2012)

    Article  Google Scholar 

  25. L.H. Zhang, Q. Yang, M. Yang, W. Song, Z.L. Cao, Phys. Rev. A 88, 062342 (2013)

    Article  ADS  Google Scholar 

  26. K. Bartkiewicz, J. Beran, K. Lemr, M. Norek, A. Miranowicz, Phys. Rev. A 91, 022323 (2015)

    Article  ADS  Google Scholar 

  27. K. Bartkiewicz, P. Horodecki, K. Lemr, A. Miranowicz, K. Życzkowski, Phys. Rev. A 91, 032315, (2015)

    Article  ADS  Google Scholar 

  28. Wen-Long Yang, Jin-Ling Chen, Phys. Rev. A. 76, 034301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  30. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  31. M.A. Nielsen, Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  32. S. Bhardwaj, V. Ravishankar, Phys. Rev. A 77, 022322 (2008)

    Article  ADS  Google Scholar 

  33. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  34. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  35. I. Bose, E. Chattopadhyay, Phys. Rev. A 66, 062320 (2002)

    Article  ADS  Google Scholar 

  36. L.A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Wunderich, M.B. Plenio, J. Mod. Opt. 56, 2100 (2009)

    Article  ADS  Google Scholar 

  38. K.M.R. Audenaert, M.B. Plenio, New J. Phys. 8, 266 (2006)

    Article  ADS  Google Scholar 

  39. I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  40. S.J. Gu, H.Q. Lin, Y.Q. Li, Phys. Rev. A 68, 042330 (2003)

    Article  ADS  Google Scholar 

  41. X. Wang, K. Mølmer, Eur. Phys. J. D 18, 385 (2002)

    ADS  Google Scholar 

  42. K.M. O’Connor, W.K. Wootters, Phys. Rev. A 63, 052302 (2001)

    Article  ADS  Google Scholar 

  43. M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, Phys. Rev. Lett. 92, 177901 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, G., Ravishankar, V. Optimal observables to determine entanglement of a two qubit state. Eur. Phys. J. D 70, 10 (2016). https://doi.org/10.1140/epjd/e2015-60250-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60250-1

Keywords

Navigation