Experimental observation of the ion energy spectra of Al, Co, and Cu laser produced plasmas

  • Jon Imanol Apiñaniz
  • Alvaro Peralta Conde
  • Roberto Martínez Perez de Mendiola
Regular Article


It is well known that nanosecond laser produced plasmas (LPPs) produce high kinetic energy ions when they expand to vacuum. The acceleration process is nowadays accepted to be due to the formation of a sharp double layer (DL) in the plasma-vacuum boundary. With the purpose of studying this acceleration process, kinetic energy spectra of the plasma ions are measured for each charge state separately. Experimental results are obtained by irradiating planar targets of Cu, Co and Al at a laser wavelength of 532 nm and fluences up to 58.1 J cm-2. The obtained results show two new insights in the ion energy spectra. Firstly, they are non-maxwellian despite the widely accepted local thermal equilibrium in these type of plasmas. Secondly they show non-expected bicomponents distributions. The average energy of each species does not vary linearly with the charge state, suggesting complex acceleration processes.


Plasma Physics 


  1. 1.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994)Google Scholar
  2. 2.
    H.G. Rubahn, Laser Applications in Surface Science and Technology (Wiley, 1996)Google Scholar
  3. 3.
    J.R. Freeman, S. Harilal, T. Sizyuk, A. Hassanein, B. Rice, in SPIE Proceedings 0277786X, edited by P.P. Naulleau, O.R. Wood II, 8322, 83220H (SPIE, 2012)Google Scholar
  4. 4.
    F. Brunel, Phys. Rev. Lett. 59, 6 (1987)CrossRefGoogle Scholar
  5. 5.
    S. Eliezer, H. Hora, Phys. Rep. 172, 339 (1989)CrossRefADSGoogle Scholar
  6. 6.
    D. Umstadter, J. Phys. D 36, R151 (2003)CrossRefADSGoogle Scholar
  7. 7.
    S. Wilks, W. Kruer, M. Tabak, A. Langdon, Phys. Rev. Lett. 69, 1383 (1992)CrossRefADSGoogle Scholar
  8. 8.
    T. Fujimoto, in Plasma Spectroscopy (Springer, 2008), p. 29Google Scholar
  9. 9.
    T. Efthimiopoulos, D. Dogas, I. Palli, C. Gravalidis, M. Campbell, Appl. Phys. A 71, 325 (2000)CrossRefADSGoogle Scholar
  10. 10.
    M.M. Polek, S. Harilal, A. Hassanein, Appl. Opt. 51, 498 (2012)CrossRefADSGoogle Scholar
  11. 11.
    J. Apinaniz, R. Martinez, Plasma Sci. IEEE Trans. Plasma Sci. 39, 2928 (2011)CrossRefADSGoogle Scholar
  12. 12.
    L.P. Block, Astrophys. Space Sci. 55, 59 (1978)CrossRefADSGoogle Scholar
  13. 13.
    J.E. Crow, P.L. Auer, J.E. Allen, J. Plasma Phys. 14, 65 (1975)CrossRefADSGoogle Scholar
  14. 14.
    P. Mora, Phys. Rev. Lett. 90, 185002 (2003)CrossRefADSGoogle Scholar
  15. 15.
    N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)CrossRefADSGoogle Scholar
  16. 16.
    F. Caridi, L. Torrisi, L. Giuffrida, Nucl. Instrum. Methods Phys. Res. B 268, 499 (2010)CrossRefADSGoogle Scholar
  17. 17.
    J.I. Apiñaniz, B. Sierra, R. Martínez, A. Longarte, C. Redondo, F. Castaño, J. Phys. Chem. C 112, 16556 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Apinaniz, J.I. Apiñaniz, F.J. Gordillo-Vázquez, R. Martínez, Plasma Sources Sci. Tech. 21, 015016 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Handbook of Chemistry and Physics”, edited by D.R. Lide (CRC Press, Boca Raton, FL, 2005)Google Scholar
  20. 20.
    M.N. Saha, Philos. Mag. Ser. 6 40, 472 (1920)CrossRefGoogle Scholar
  21. 21.
    M.N. Saha, Proc. R. Soc. A Math. Phys. Eng. Sci. 99, 135 (1921)CrossRefADSGoogle Scholar
  22. 22.
    G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B At. Spectrosc. 65, 86 (2010)CrossRefADSGoogle Scholar
  23. 23.
    T. Fujimoto, R.W.P. McWhirter, Phys. Rev. A 42, 6588 (1990)CrossRefADSGoogle Scholar
  24. 24.
    N. Gambino, Ph.D. thesis, 2010Google Scholar
  25. 25.
    D. Colombant, G.F. Tonon, J. Appl. Phys. 44, 3524 (1973)CrossRefADSGoogle Scholar
  26. 26.
    S. Harilal, B. O’Shay, M.S. Tillack, M.V. Mathew, J. Appl. Phys. 98, 13306 (2005)CrossRefADSGoogle Scholar
  27. 27.
    J.I. Apinaniz, R. Martinez, IEEE Trans. Plasma Sci. 39, 2928 (2011)CrossRefADSGoogle Scholar
  28. 28.
    Xianfan Xu, D.A. Willis, J. Heat Transfer 124, 293 (2002)CrossRefGoogle Scholar
  29. 29.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 77, 199 (2001)CrossRefADSGoogle Scholar
  30. 30.
    A. Miotello, R. Kelly, Appl. Phys. A 69, 567 (1999)CrossRefGoogle Scholar
  31. 31.
    Xianfan Xu, K.H. Song, Mater. Sci. Eng. A 292, 162 (2000)CrossRefGoogle Scholar
  32. 32.
    Xianfan Xu, J. Heat Transfer. 124, 293 (2002)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jon Imanol Apiñaniz
    • 1
    • 2
  • Alvaro Peralta Conde
    • 1
  • Roberto Martínez Perez de Mendiola
    • 2
  1. 1.Centro de Láseres Pulsados (CLPU), Parque Científico USAL, M5 buildingVillamayorSpain
  2. 2.Chemical Physics department, University of the Basque Country UPV/EHUBilbaoSpain

Personalised recommendations