Advertisement

Theoretical study of the thermally induced structural fluctuations in sub-nanometre size gold clusters

  • José Manuel Cabrera-Trujillo
  • Juan Martín Montejano-Carrizales
  • Faustino Aguilera-Granja
  • Álvaro Posada-Amarillas
Regular Article

Abstract

A reactive potential model and the classical molecular dynamics method (RMD) have been used to study the structure and energetics of sub-nanometre size gold clusters through well-known structural models reported in the literature for AuN, with N = 19, 20 and 21 atoms. After several simulated-annealing simulations for temperatures up to 1500 K, the Au N clusters clearly evolve to well-defined structures at room temperature. For the studied gold clusters, the low-lying structures are single- and double-icosahedra with mobile atoms on the surface, in agreement with experimental results on sub-nanometre size gold clusters exhibiting shape oscillations at room temperature and also with those involved in the design of molecules based on gold superatoms [J.-I. Nishigaki, K. Koyasu, T. Tsukuda, Chem. Rec. 14, 897 (2014)]. The evolution of the structural stability of the Au N clusters under exceptional thermal conditions is analysed by comparing the size and temperature variations of the centrosymmetry parameter and the potential energy. A key understanding of the various possible structural changes undergone by these tiny particles is thus developed. The usefulness of the RMD to study nanometre or sub-nanometre size gold clusters is shown.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    M. Haruta, Relevance of Metal Nanoclusters Size Control in Gold(0) Catalytic Chemistry, 1st edn. (Elsevier, Amsterdam, 2008), Chap. 9, pp. 183–199Google Scholar
  2. 2.
    L.M. Molina, J.A. Alonso, J. Phys. Chem. C 111, 6668 (2007) CrossRefGoogle Scholar
  3. 3.
    J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005) CrossRefGoogle Scholar
  4. 4.
    Y. Lu, W. Chen, Chem. Soc. Rev. 41, 3594 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)CrossRefADSGoogle Scholar
  6. 6.
    T. Li, S. Yin, Y. Ji, B. Wang, G. Wang, J. Zhao, Phys. Lett. A 267, 403 (2000) CrossRefADSGoogle Scholar
  7. 7.
    I.L. Garzón, A. Posada-Amarillas, Phys. Rev. B 54, 11796 (1996) CrossRefADSGoogle Scholar
  8. 8.
    C.L. Cleveland, U. Landman, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Z. Phys. D 40, 503 (1997)CrossRefADSGoogle Scholar
  9. 9.
    M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993)CrossRefGoogle Scholar
  10. 10.
    V. Rosato, M. Guillope, B. Legrand, Philos. Mag. A 59, 321 (1989)CrossRefADSGoogle Scholar
  11. 11.
    P. Pyykko, Chem. Soc. Rev. 37, 1967 (2008) CrossRefGoogle Scholar
  12. 12.
    A.H. Larsen, J. Kleis, K.S. Thygesen, J.K. Norskov, K.W. Jacobsen, Phys. Rev. B 84, 245429 (2011) CrossRefADSGoogle Scholar
  13. 13.
    I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, Phys. Rev. Lett. 81, 1600 (1998) CrossRefADSGoogle Scholar
  14. 14.
    H.-Y. Zhao, H. Ning, J. Wang, X.-J. Su, X.-G. Guo, Y. Liu, Phys. Lett. A 374, 1033 (2010) CrossRefADSGoogle Scholar
  15. 15.
    J. Oviedo, R.E. Palmer, J. Chem. Phys. 117, 9548 (2002) CrossRefADSGoogle Scholar
  16. 16.
    L. Xiao, L. Wang, Chem. Phys. Lett. 392, 452 (2004) CrossRefADSGoogle Scholar
  17. 17.
    J. Li, X. Li, H.J. Zhai, L.S. Wang, Science 299, 864 (2003) CrossRefADSGoogle Scholar
  18. 18.
    P. Gruene, D.M. Rayner, B. Redlich, A.F. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008) CrossRefADSGoogle Scholar
  19. 19.
    P. Weis, Int. J. Mass Spectrom. 245, 1 (2005)CrossRefADSGoogle Scholar
  20. 20.
    Z.W. Wang, R.E. Palmer, Nanoscale 4, 4947 (2012)CrossRefADSGoogle Scholar
  21. 21.
    B.A. Smith, J.Z. Zhang, U. Giebel, G. Schmid, Chem. Phys. Lett. 270, 139 (1997) CrossRefADSGoogle Scholar
  22. 22.
    A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001) CrossRefGoogle Scholar
  23. 23.
    K. Chenoweth, A.C. van Duin, W.A. Goddard, J. Phys. Chem. A 112, 1040 (2008) CrossRefGoogle Scholar
  24. 24.
    A.C.T. van Duin, ReaxFF User Manual (Beckman Institute (139-74), California Institute of Technology, Pasadena, CA 91125 USA, 2002)Google Scholar
  25. 25.
    T. Liang, Y.K. Shin, Y.T. Cheng, D.E. Yilmaz, K.G. Vishnu, O. Verners, C. Zou, S.R. Phillpot, S.B. Sinnott, A.C. van Duin, Ann. Rev. Mater. Res. 43, 109 (2013)CrossRefADSGoogle Scholar
  26. 26.
    T.T. Järvi, A. Kuronen, M. Hakala, K. Nordlund, A.C. van Duin, I. Goddard, W.A., T. Jacob, Eur. Phys. J. B 66, 75 (2008)CrossRefADSGoogle Scholar
  27. 27.
    J.A. Keith, D. Fantauzzi, T. Jacob, A.C.T. van Duin, Phys. Rev. B 81, 235404 (2010) CrossRefADSGoogle Scholar
  28. 28.
    T.T. Järvi, A.C.T. van Duin, K. Nordlund, W.A. Goddard, J. Phys. Chem. A 115, 10315 (2011) CrossRefGoogle Scholar
  29. 29.
    J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002) CrossRefADSGoogle Scholar
  30. 30.
    J. Wang, G. Wang, J. Zhao, Chem. Phys. Lett. 380, 716 (2003) CrossRefADSGoogle Scholar
  31. 31.
    J.M. Cabrera-Trujillo, J.M. Montejano-Carrizales, J.L. Rodríguez-López, W. Zhang, J.J. Velázquez-Salazar, M. José-Yacamán, J. Phys. Chem. C 114, 21051 (2010) CrossRefGoogle Scholar
  32. 32.
    J.I. Nishigaki, K. Koyasu, T. Tsukuda, Chem. Rec. 14, 897 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Mayoral, C. Magen, M. Jose-Yacaman, J. Cryst. Growth Design 11, 4538 (2011) CrossRefGoogle Scholar
  34. 34.
    A. Mayoral, A. Vazquez-Duran, H. Barron, M. Jose-Yacaman, Appl. Phys. A 97, 11 (2009)CrossRefADSGoogle Scholar
  35. 35.
    J.A. Ascencio, M. Pérez, M. José-Yacamán, Surf. Sci. 447, 73 (2000)CrossRefADSGoogle Scholar
  36. 36.
    V. Gomzi, J. Comput. Theor. Nanosci. 9, 419 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)CrossRefADSGoogle Scholar
  38. 38.
    J. Farges, M.F. De Feraudy, B. Raoult, G. Torchet, Surf. Sci. 156, 370 (1985) CrossRefADSGoogle Scholar
  39. 39.
    J.L. Burt, J.L. Elechiguerra, J. Reyes-Gasga, J.M. Montejano-Carrizales, M. Jose-Yacaman, J. Cryst. Growth 285, 681 (2005) CrossRefADSGoogle Scholar
  40. 40.
    H.M. Aktulga, J.C. Fogarty, S.A. Pandit, A.Y. Grama, Parallel Comput. 38, 245 (2012)CrossRefGoogle Scholar
  41. 41.
    J.M. Haile, Molecular dynamics simulation: elementary methods (John Wiley & Sons, Inc., New York, 1992) Google Scholar
  42. 42.
    C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Phys. Rev. B 58, 11085 (1998) CrossRefADSGoogle Scholar
  43. 43.
    T. Castro, R. Reifenberger, E. Choi, R.P. Andres, Phys. Rev. B 42, 8548 (1990) CrossRefADSGoogle Scholar
  44. 44.
    G. Schmid, General Features of Metal Nanoparticles Physics and Chemistry, 1st edn. (Elsevier, Amsterdam, 2008), Chap. 1, pp. 3–20Google Scholar
  45. 45.
    S.Y. Davydov, Phys. Solid State 41, 8 (1999)CrossRefADSGoogle Scholar
  46. 46.
    Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, edited by B. Corain, G. Schmid, N. Toshima, 1st edn. (Elsevier, Amsterdam, 2008)Google Scholar
  47. 47.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, Inc, 2005)Google Scholar
  48. 48.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002) ADSGoogle Scholar
  49. 49.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) CrossRefADSGoogle Scholar
  50. 50.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) CrossRefADSGoogle Scholar
  51. 51.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  52. 52.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. (Cambridge University Press, Cambridge, 1992), Vol. 1 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • José Manuel Cabrera-Trujillo
    • 1
  • Juan Martín Montejano-Carrizales
    • 2
  • Faustino Aguilera-Granja
    • 2
  • Álvaro Posada-Amarillas
    • 3
  1. 1.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Departamento de Investigación en FísicaUniversidad de SonoraHermosillo, SonoraMexico

Personalised recommendations