Advertisement

Enhancement of optical emission signal in double-pulse laser ablation of titanium in vacuum

  • Nikša Krstulović
  • Marijan Bišćan
  • Slobodan Milošević
Regular Article
  • 105 Downloads

Abstract

Laser plasma of Ti produced in vacuum was studied by optical emission spectroscopy. The plasma was produced in a single-pulse and a double-pulse mode of ablation in a collinear configuration of laser beams. It was shown that there is a significant enhancement in emission intensity in double-pulse mode. Moreover, depending on the delay time between laser pulses in double-pulse mode signal enhancement (up to 18-fold) was further optimized. Measurement of emission from neutral and ionized Ti atoms showed that there is an optimal delay time for which emission enhancement is maximal, for both ions and neutrals. It was shown that using double-pulse laser ablation the enhancement is mostly pronounced when emission from plasma near the target surface is taken into account. This increases the limit of detection and the signal/background ratio.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    B. Li, T. Otsuka, T. Higashiguchi, N. Yugami, W. Jiang, A. Endo, P. Dunne, G. O’Sullivan, Appl. Phys. Lett. 101, 013112 (2012)CrossRefADSGoogle Scholar
  2. 2.
    D. Kilbane, G. O’Sullivan, J. Appl. Phys. 108, 104905 (2010)CrossRefADSGoogle Scholar
  3. 3.
    T. Otsuka, D. Kilbane, J. White, T. Higashiguchi, N. Yugami, T. Yatagai, W. Jiang, A. Endo, P. Dunne, G. O’Sullivan, Appl. Phys. Lett. 97, 111503 (2010)CrossRefADSGoogle Scholar
  4. 4.
    D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R.A. Fonseca, L.O. Silva, W.B. Mori, C. Joshi, Nat. Phys. 8, 95 (2012)CrossRefGoogle Scholar
  5. 5.
    I. Labazan, N. Krstulović, S. Milošević, J. Phys. D 36, 2465 (2003)CrossRefADSGoogle Scholar
  6. 6.
    I. Labazan, N. Krstulović, S. Milošević, Chem. Phys. Lett. 428, 13 (2006)CrossRefADSGoogle Scholar
  7. 7.
    N. Krstulović, I. Labazan, S. Milošević, Eur. Phys. J. D 37, 209 (2006)CrossRefADSGoogle Scholar
  8. 8.
    A. Anders, J. Phys. D 40, 8, 2272 (2007)CrossRefADSGoogle Scholar
  9. 9.
    G. Socol, P. Torricelli, B. Bracci, M. Iliescu, F. Miroiu, A. Bigi, J. Werckmann, I. Mihailescu, Biomaterials 25, 2539 (2004)CrossRefGoogle Scholar
  10. 10.
    D. Riabinina, E. Irissou, B. Le Drogoff, M. Chaker, D. Guay, J. Appl. Phys 108, 034322 (2010)CrossRefADSGoogle Scholar
  11. 11.
    F. Bloisi, A. Cassinese, R. Papa, L. Vicari, V. Califano, Thin Solid Films 516, 1594 (2008)CrossRefADSGoogle Scholar
  12. 12.
    P. Dubček, B. Pivac, S. Milošević, N. Krstulović, Z. Kregar, S. Bernstorff, Appl. Surf. Sci. 257, 5358 (2011)CrossRefADSGoogle Scholar
  13. 13.
    P. Dubček, B. Pivac, S. Milošević, N. Krstulović, Z. Kregar, S. Bernstorff, ISRN Nanomaterials 2013, 576506 (2013)Google Scholar
  14. 14.
    R.A. Ganeev, L.B.E. Bom, J.-C. Kieffer, T. Ozaki, Phys. Rev. A 75, 063806 (2007)CrossRefADSGoogle Scholar
  15. 15.
    X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S.A. Yi, X. Zhang, W. Henderson, Y.-Y. Chang, R. Korzekwa, H.-E. Tsai, C.-H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A.C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, M.C. Downer, Nat. Commun. 4, 1988 (2013)ADSGoogle Scholar
  16. 16.
    M. Lysaght, D. Kilbane, N. Murphy, A. Cummings, P. Dunne, G.O. Sullivan, Phys. Rev. A 72, 014502 (2005)CrossRefADSGoogle Scholar
  17. 17.
    V.I. Babushok, F.C. DeLucia Jr., J.L. Gottfried, C.A. Munson, A.W. Miziolek, Spectrochim. Acta B 61, 999 (2006)CrossRefADSGoogle Scholar
  18. 18.
    G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta B 63, 312 (2008)CrossRefADSGoogle Scholar
  19. 19.
    J. Scaffidi, S.M. Angel, D.A. Cremers, Anal. Chem. 78, 25 (2006)CrossRefGoogle Scholar
  20. 20.
    C. Gautier, P. Fichet, D. Menut, J. Dubessy, Spectrochim. Acta B 61, 210 (2006)CrossRefADSGoogle Scholar
  21. 21.
    H. Lindner, J. Koch, K. Niemax, Anal. Chem. 77, 7528 (2005)CrossRefGoogle Scholar
  22. 22.
    T. Higashiguchi, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, D. Kilbane, P. Dunne, G. O’Sullivan, Appl. Phys. Lett. 99, 191502 (2011)CrossRefADSGoogle Scholar
  23. 23.
    I. Fasaki, M. Kandyla, M. Tsoutsouva, M. Kompitsas, Sensors Act. B 176, 103 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Mukherjee, R. Hyde, P. Mukherjee, H. Srikanth, S. Witanachchi, J. Appl. Phys. 111, 064102 (2012)CrossRefADSGoogle Scholar
  25. 25.
    D. Roberts, A. du Plessis, L. Botha, Appl. Surf. Sci. 256, 1784 (2010)CrossRefADSGoogle Scholar
  26. 26.
    C. Sánchez Aké, H. Sobral, E. Sterling, M. Villagrán Muniz, Appl. Phys. A 79, 1345 (2004)CrossRefADSGoogle Scholar
  27. 27.
    V. Hohreiter, D.W. Hahn, Spectrochim. Acta B 60, 968 (2005)CrossRefADSGoogle Scholar
  28. 28.
    N. Krstulović, N. Čutić, S. Milošević, Spectrochim. Acta B 64, 271 (2009)CrossRefADSGoogle Scholar
  29. 29.
    X.L. Mao, X.Z. Zeng, S.B. Wen, R.E. Russo, Spectrochim. Acta B 60, 960 (2005)CrossRefADSGoogle Scholar
  30. 30.
    M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Spectrochim. Acta B 59, 723 (2004)CrossRefADSGoogle Scholar
  31. 31.
    C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, J. Dubessy, Spectrochim. Acta B 60, 265 (2005)CrossRefADSGoogle Scholar
  32. 32.
    B.C. Windom, P.K. Diwakar, D.W. Hahn, Spectrochim. Acta B 61, 788 (2006)CrossRefADSGoogle Scholar
  33. 33.
    N. Krstulović, S. Milošević, Appl. Surf. Sci. 256, 13, 4142 (2010)CrossRefADSGoogle Scholar
  34. 34.
    L. Torrisi, D. Margarone, A. Borrielli, F. Caridi, Appl. Surf. Sci. 254, 13, (2008)CrossRefGoogle Scholar
  35. 35.
    A. Borrielli, L. Torrisi, D. Margarone, F. Caridi, A.M. Mezzasalma, Nucl. Instrum. Methods. B 266, 18 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nikša Krstulović
    • 1
  • Marijan Bišćan
    • 1
  • Slobodan Milošević
    • 1
  1. 1.Institute of PhysicsZagrebCroatia

Personalised recommendations