Advertisement

Cross sections for vibrational inhibition at low collision energies for the reaction H + Li2(X1Σ g + ) → Li + LiH (X1Σ+)

  • Shoubao Gao
  • Jing Zhang
  • Yuzhi Song
  • Qing-Tian Meng
Regular Article

Abstract

A time-dependent wave packet dynamics study of the H + Li2 reaction has been performed on the novel HLi2(X2A′) potential energy surface [Y.Z. Song, Y.Q. Li, S.B. Gao, Q.T. Meng, Eur. Phys. J. D 68, 1 (2014)]. The v-dependent reaction probabilities and integral cross sections are presented as a function of collision energies. From the v-dependent behaviour of integral cross sections, it can be seen that the vibrational excitation of the reactant Li2 hinders the reactivity at low collision energies. Furthermore, the comparison of j-dependent reaction probabilities indicates that Li2 rotation also hinders the reaction.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    P. Siegbahn, H.F. Schaefer, J. Chem. Phys. 62, 3488 (1975)CrossRefADSGoogle Scholar
  2. 2.
    C.H. Wu, H.R. Ihle, J. Chem. Phys. 66, 4356 (1977)CrossRefADSGoogle Scholar
  3. 3.
    M. Krauss, W.J. Stevens, Annu. Rev. Phys. Chem. 35, 357 (1984)CrossRefADSGoogle Scholar
  4. 4.
    S.K. Kim, D.R. Herschbach, Faraday Discuss. Chem. Soc. 84, 159 (1987)CrossRefGoogle Scholar
  5. 5.
    C.P. Shukla, N. Sathyamurthy, I.P. Khuller, J. Chem. Phys. 87, 3251 (1987)CrossRefADSGoogle Scholar
  6. 6.
    S.K. Kim, S.C. Jeoung, A.L.C. Tan, D.R. Herschbach, J. Chem. Phys. 95, 3854 (1991)CrossRefADSGoogle Scholar
  7. 7.
    B. Vezin, P. Dugourd, D. Rayane, P. Labastie, M. Broyer, Chem. Phys. Lett. 202, 209 (1993)CrossRefADSGoogle Scholar
  8. 8.
    A.R. Allouche, M. Aubert-Frecon, F. Spiegelmann, Can. J. Phys. 74, 194 (1996)CrossRefADSGoogle Scholar
  9. 9.
    R. Antoine, P. Dugourd, D. Rayane, A.R. Allouche, M. Aubert-Frecon, M. Broyer, Chem. Phys. Lett. 261, 670 (1996)CrossRefADSGoogle Scholar
  10. 10.
    G.S. Yan, H. Xian, D.Q. Xie, Sci. China Ser. B Chem. 40, 342 (1997)CrossRefGoogle Scholar
  11. 11.
    C.H. Wu, R.O. Jones, J. Chem. Phys. 120, 5128 (2004).CrossRefADSGoogle Scholar
  12. 12.
    W. Skomorowski, F. Pawlowski, T. Korona, R. Moszynski, P.S. Zuchowski, J.M. Hutson, J. Chem. Phys. 134, (2011) 114109CrossRefADSGoogle Scholar
  13. 13.
    A.M. Maniero, P.H. Acioli, G.M.E. Silva, R. Gargano, Chem. Phys. Lett. 490, 123 (2010)CrossRefADSGoogle Scholar
  14. 14.
    H.V.R. Vila, L.A. Leal, J.B.L. Martins, D. Skouteris, G.M.E. Silva, R. Gargano, J. Chem. Phys. 136, 134319 (2012)CrossRefADSGoogle Scholar
  15. 15.
    C. Leforestier, in The Theory of Chemical Reaction Dynamics, NATO ASI series, edited by D.C. Clary (Kluwer Academic Publishers Dordrecht, 1985), Vol. 170, p. 235Google Scholar
  16. 16.
    S.K. Gray, G.G. Balint-Kurti, J. Chem. Phys. 108, 950 (1998)CrossRefADSGoogle Scholar
  17. 17.
    S. Gomez-Carrasco, O. Roncero, J. Chem. Phys. 125, 054102 (2006)CrossRefADSGoogle Scholar
  18. 18.
    A. Zanchet, O. Roncero, T. Gonzalez-Lezana, A. Rodriguez-Lopez, A. Aguado, C. Sanz-Sanz, S. Gomez-Carrasco, J. Phys. Chem. A 113, 14488 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Zanchet, T. Gonzalez-Lezana, A. Aguado, S. Gomez-Carrasco, O. Roncero, J. Phys. Chem. A 114, 9733 (2010)CrossRefGoogle Scholar
  20. 20.
    H.D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990)CrossRefADSGoogle Scholar
  21. 21.
    H.D. Meyer, G.A. Worth, Theor. Chem. Acc. 109, 251 (2003)CrossRefGoogle Scholar
  22. 22.
    D.H. Zhang, J.Z.H. Zhang, J. Chem. Phys. 101, 1146 (1994)CrossRefADSGoogle Scholar
  23. 23.
    D.H. Zhang, J.Z.H. Zhang, J. Chem. Phys. 101, 3671 (1994)CrossRefADSGoogle Scholar
  24. 24.
    M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)CrossRefADSMATHMathSciNetGoogle Scholar
  25. 25.
    T.S. Chu, R.F. Lu, K.L. Han, X.N. Tang, H.F. Xu, C.Y. Ng, J. Chem. Phys. 122, 244322 (2005)CrossRefADSGoogle Scholar
  26. 26.
    R.F. Lu, T.S. Chu, K.L. Han, J. Phys. Chem. A 109, 6683 (2005)CrossRefGoogle Scholar
  27. 27.
    T.S. Chu, K.L. Han, G.C. Schatz, J. Phys. Chem. A 111, 8286 (2007)CrossRefGoogle Scholar
  28. 28.
    S.J. Lv, P.Y. Zhang, K.L. Han, G.Z. He, J. Chem. Phys. 136, 094308 (2012)CrossRefADSGoogle Scholar
  29. 29.
    J. Zhao, Y. Luo, J. Phys. Chem. A 116, 2388 (2012)CrossRefGoogle Scholar
  30. 30.
    S.B. Gao, Y.Z. Song, Q.T. Meng, Comput. Theor. Chem. 1039, 15 (2014)CrossRefGoogle Scholar
  31. 31.
    Y.Z. Song, Y.Q. Li, S.B. Gao, Q.T. Meng, Eur. Phys. J. D 68, 1 (2014)CrossRefADSGoogle Scholar
  32. 32.
    A.J.C. Varandas, J. Chem. Phys. 90, 4379 (1989)CrossRefADSGoogle Scholar
  33. 33.
    T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)CrossRefGoogle Scholar
  34. 34.
    S. Ying Lin, H. Guo, J. Chem. Phys. 122, 074304 (2005)CrossRefADSGoogle Scholar
  35. 35.
    Z.P. Sun, C.F. Zhang, S.Y. Lin, Y.J. Zheng, Q.T. Meng, W.S. Bian, J. Chem. Phys. 139, 014306 (2013)CrossRefADSGoogle Scholar
  36. 36.
    L.R.J. Le Roy, University of Waterloo Chemical Physics Report CP-655 (2002), http://leroy.uwaterloo.can

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shoubao Gao
    • 1
  • Jing Zhang
    • 1
  • Yuzhi Song
    • 1
  • Qing-Tian Meng
    • 1
  1. 1.College of Physics and ElectronicsShandong Normal UniversityJinanP.R. China

Personalised recommendations