Decay of a finite-sized transient photoplasma in an electrostatic field

  • Biswajit Jana
  • Abhinandan Majumder
  • Kiran B. Thakur
  • Ashoka K. Das
Regular Article
  • 54 Downloads

Abstract

Photoplasma is produced through multi-step resonant photoionization method by shining the laser pulses onto a collimated atomic beam. It has finite size having a sharp density gradient at its boundary. It is created within the duration of laser pulse (~10 ns) while it lasts for few tens of micro-seconds. During its decay in an external electrostatic field, the photoplasma passes through various physical phenomena happened along the direction of the electric field. The transient responses of photoplasma to the external electric field and its temporal evolutions are studied using a one dimensional model based on standard particle-in-cell (PIC) technique. The various processes like relaxation of mono-energetic electrons, spatial and temporal variations in plasma potential, plasma-sheath formation, charge particles distribution near the plasma-sheath boundary, motion of plasma-sheath boundary, expansion of the finite-width photoplasma and collections of charge particles at the boundaries (i.e. electrodes) are investigated and discussed.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    J.P. Furtlenhner, A. Blanchet, B. Leloutre, Rev. Sci. Instrum. 65, 2984 (1994)CrossRefADSGoogle Scholar
  2. 2.
    K. Oruga, T. Arisawa, T. Shibata, Jpn Atm. Energy Res. Inst. Rep. 91, 222 (1992)Google Scholar
  3. 3.
    P.T. Greenland, Contemp. Phys. 31, 405 (1990)CrossRefADSGoogle Scholar
  4. 4.
    V.S. Letokhov, Laser Photoionization Spectroscopy (Academic Press, New York, 1987)Google Scholar
  5. 5.
    H. Mori, Appl. Phys. Lett. 72, 1948 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Y. Kudryavtsev, J. Andrzejewski, N. Bijnens, S. Franchoo, J. Gentens, M. Huyse, A. Piechaczek, J. Szerypo, I. Reusen, P.V. Duppen, P.V.D. Bergh, L. Vermeeren, J. Wauters, A. Wiihr, Nucl. Instrum Meth. Phys. Res. B 114, 350 (1996)CrossRefADSGoogle Scholar
  7. 7.
    V.N. Fedoseyev, G. Huber, U. Koster, J. Lettry, V.I. Mishin, H. Ravn, V. Sebastian, the ISOLDE Collaboration, Hyperfine Interact. 127, 409 (2000)CrossRefADSGoogle Scholar
  8. 8.
    S. Masamune, K. Yukimura, Rev. Sci. Instrum. 71, 1187 (2000)CrossRefADSGoogle Scholar
  9. 9.
    T.C. Killian, S. Kulin, S.D. Bergeson, L.A. Orozeo, C. Orzel, S.L. Rolston, Phys. Rev. Lett. 83, 4776 (1999)CrossRefADSGoogle Scholar
  10. 10.
    F.F. Chen, Phys. Fluids 25, 2385 (1982)CrossRefADSMATHGoogle Scholar
  11. 11.
    K. Okano, J. Nucl. Sci. Technol. 29, 601 (1992)CrossRefGoogle Scholar
  12. 12.
    M. Murakami, K. Nishihara, Phys. Fluids B 5, 3441 (1993)CrossRefADSGoogle Scholar
  13. 13.
    I.I. Litvinov, Russian Laser Res. 18, 87 (1997)CrossRefGoogle Scholar
  14. 14.
    F. Giammanco, Phy. Rev. A 40, 5160 (1989)CrossRefADSGoogle Scholar
  15. 15.
    K. Yamada, T. Tetsuka, Y. Deguchi, J. Appl. Phys. 67, 6734 (1990)CrossRefADSGoogle Scholar
  16. 16.
    K. Yamada, H. Okada, T. Tetsuka, K. Yoshioka, J. Nucl. Sci. Technol. 30, 143 (1993)CrossRefGoogle Scholar
  17. 17.
    R. Nishio, K. Yamada, K. Suzuki, M. Wakabayashi, J. Nucl. Sci. Technol. 32, 180 (1995)CrossRefGoogle Scholar
  18. 18.
    A. Majumder, B. Jana, P.T. Kathar, A.K. Das, V.K. Mago, Phys. Plasma 15, 123508 (2008)CrossRefADSGoogle Scholar
  19. 19.
    K. Yamada, T. Tetsuka, Y. Deguchi, J. Appl. Phys. 69, 6962 (1991)CrossRefADSGoogle Scholar
  20. 20.
    K. Yamada, T. Tetsuka, Y. Deguchi, J. Appl. Phys. 69, 8064 (1991)CrossRefADSGoogle Scholar
  21. 21.
    H. Kurosawa, S. Hasegawa, A. Suzuki, J. Appl. Phys. 91, 4818 (2002)CrossRefADSGoogle Scholar
  22. 22.
    R.I. Golyatina, Y.I. Sytsko, S.I. Yakovlenko, Laser Phys. 8, 860 (1998)Google Scholar
  23. 23.
    A. Majumder, V.K. Mago, P.T. Kathar, A.K. Das, J. Appl. Phys. 94, 7044 (2003)CrossRefADSGoogle Scholar
  24. 24.
    B. Jana, A. Majumder, P.T. Kathar, A.K. Das, V.K. Mago, IEEE Trans. Plasma Sci. 40, 1643 (2012)CrossRefADSGoogle Scholar
  25. 25.
    S.I. Anisimov, Y.V. Medvedev, Physica Scripta 42, 719 (1990)CrossRefADSGoogle Scholar
  26. 26.
    K. Ogura, H. kaburaki, T. Shibata, J. Nucl. Sci. Technol. 30, 1248 (1993)CrossRefGoogle Scholar
  27. 27.
    J. Watanabe, K. Okano, Phys. Fluids B 5, 3092 (1993)CrossRefADSGoogle Scholar
  28. 28.
    A.G. Zhidkov, Phys. Plasmas 5, 541 (1998)CrossRefADSGoogle Scholar
  29. 29.
    P. Vitello, C. Cerjan, D. Braun, Phys. Fluids. B 4, 1447 (1992)CrossRefADSGoogle Scholar
  30. 30.
    H. Kurosawa, S. Hasegawa, A. Suzuki, J. Appl. Phys. 90, 3713 (2001)CrossRefADSGoogle Scholar
  31. 31.
    S. Hasegawa, M. Takei, A. Suzuki, H. Kurusawa, J. Appl. Phys. 90, 5878 (2001)CrossRefADSGoogle Scholar
  32. 32.
    K. Patel, V.K. Mago, J. Appl. Phys. 78, 4371 (1995)CrossRefADSGoogle Scholar
  33. 33.
    B. Jana, P.K. Kathar, A. Majumder, K.B. Thakur, A.K. Das, Meas. Sci. Technol. 25, 015003 (2014)CrossRefADSGoogle Scholar
  34. 34.
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles (Taylor & Francis Group, New York, 1984)Google Scholar
  35. 35.
    C.K. Birdshall, A.B. Langdon, Plasma Physics Via Computer Simulation (Mcgraw-Hill, New York, 1985)Google Scholar
  36. 36.
    S.C. Chapra, R.P. Canale, Numerical methods for engineers (Tata Mcgraw-Hill, New Delhi, 2002)Google Scholar
  37. 37.
    F.F. Chen, Introduction to plasma physics and controlled fusion (Plenum Press, New York, 1984), Vol. 1Google Scholar
  38. 38.
    M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and matterial processing (John Wiley & Sons Inc., New York, 1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Biswajit Jana
    • 1
  • Abhinandan Majumder
    • 1
  • Kiran B. Thakur
    • 1
  • Ashoka K. Das
    • 1
  1. 1.Laser & Plasma Technology DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations