Skip to main content
Log in

Electron-impact-induced tryptophan molecule fragmentation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The fragmentation of a gas-phase tryptophan molecule by a low-energy (<70 eV) electron impact was studied both experimentally and theoretically. Various positively charged fragments were observed and analyzed. A special attention was paid to the energy characteristics of the ionic fragment yield. The geometrical parameters of the initial molecule rearrangement were also analyzed. The fragmentation observed was due to either a simple bond cleavage or more complex reactions involving molecular rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett. 402, 497 (2005)

    Article  ADS  Google Scholar 

  2. A.F. Fuciarelli, J.D. Zimbrick, Radiation Damage in DNA: Structure/Function Relationship at Early Times (Battelle Press, Columbus, 1995)

  3. P.K. Pallaghy, A.P. Melnikova, E.C. Jimenez, B.M. Olivera, R.S. Norton, Biochemistry 38, 11553 (1999)

    Article  Google Scholar 

  4. L.V. Hankes, R.R. Brown, J. Leklem, M. Schmaeler, J. Jesseph, J. Invest. Dermatol. 58, 85 (1972)

    Article  Google Scholar 

  5. J. Thomson, H. Rankin, G.W. Ashcroft, C.M. Yates, J.K. McQueen, S.W. Cummings, Psychol. Med. 12, 741 (1982)

    Article  Google Scholar 

  6. H. Kang, C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, G. Grégoire, C. Desfrançois, J.-P. Schermann, M. Barat, J.A. Fayeton, Phys. Chem. Chem. Phys. 6, 2628 (2004)

    Article  Google Scholar 

  7. V.S. Vukstich, A.I. Imre, A.V. Snegursky, Tech. Phys. Lett. 15, 1071 (2009)

    Article  ADS  Google Scholar 

  8. V.S. Vukstich, A.I. Imre, L.G. Romanova, A.V. Snegursky, J. Phys. B 43, 185208 (2010)

    Article  ADS  Google Scholar 

  9. V.S. Vukstich, A.I. Imre, A.V. Snegursky, Instrum. Exp. Tech. 54, 66 (2011)

    Article  Google Scholar 

  10. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  11. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  ADS  Google Scholar 

  12. J.T. Bursey, M.M. Bursey, D.G.I. Kingston, Chem. Rev. 73, 231 (1973)

    Article  Google Scholar 

  13. Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004)

  14. National Institute of Standards (NIST), Standard Reference Database: Chemistry Webbook, http://webbook.nist.gov

  15. O.V. Kharitonova, in Methods and Technology of Production of Organic Compounds Used in Materials for Information Registration (MITHT Publishers, Moscow, 2004), Part I

  16. A. Kraj, D.M. Desiderio, N.M. Nibbering, in Mass Spectrometry: Instrumentation, Interpretation, and Applications, edited by R. Ekman, J. Silberring, A. Westman-Brinkmalm (John Wiley & Sons, 2009)

  17. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  ADS  Google Scholar 

  18. H. Jurgen, Gross Mass Spectroscopy. A Textbook, 2nd edn. (Springer-Verlag, Berlin-Heidelberg, 2011)

  19. F.O. Talbot, T. Tabarin, R. Antoine, M. Broyer, P. Dugourd, J. Chem. Phys. 122, 074310 (2005)

    Article  ADS  Google Scholar 

  20. O. Plekan, V. Feyer, R. Richter, M. Coreno, K.C. Prince, Mol. Phys. 106, 1143 (2008)

    Article  ADS  Google Scholar 

  21. J. Tamuliene, L.G. Romanova, V.S. Vukstich, A.V. Snegursky, Chem. Phys. 404, 74 (2012)

    Article  ADS  Google Scholar 

  22. V.S. Vukstich, L.G. Romanova, A.V. Snegursky, Tech. Phys. Lett. 38, 347 (2012)

    Article  ADS  Google Scholar 

  23. J. Tamuliene, L.G. Romanova, V.S. Vukstich, A.V. Snegursky, Chem. Phys. 404, 36 (2012)

    Article  ADS  Google Scholar 

  24. P.H. Cannington, N.S. Ham, J. Electron Spectrosc. Relat. Phenom. 32, 139 (1983)

    Article  Google Scholar 

  25. V. Lepere, B. Lucas, M. Barat, J.A. Fayeton, V.J. Picard, C. Jouvet, P. Carcabal, I. Nielsen, C. Dedonder-Lardeux, G. Gregoire, A. Fujii, J. Chem. Phys. 127, 134313 (2007)

    Article  ADS  Google Scholar 

  26. D. Dehareng, G. Dive, Int. J. Mol. Sci. 5, 301 (2004)

    Article  Google Scholar 

  27. D. Q. Liu, M. Sun, ISRN Spectrosc. 2012, 973649 (2012)

    Article  ADS  Google Scholar 

  28. J. Hager, M. Ivanco, M.A. Smith, S.C. Wallace, Chem. Phys. 105, 397 (1986)

    Article  ADS  Google Scholar 

  29. M.S. MacLennan, K.N. Sutherland, G. Orlova, J. Mol. Struct. (Theochem) 822, 21 (2007)

    Article  Google Scholar 

  30. V.S. Vukstich, L.G. Romanova, I.G. Megela, A.V. Snegursky, Tech. Phys. Let. 40, 263 (2014)

    Article  Google Scholar 

  31. J. Tamuliene, L.G. Romanova, V.S. Vukstich, A.V. Snegursky, Lith. J. Phys. 53, 195 (2013)

    Article  Google Scholar 

  32. H. El Aribi, G. Orlova, A.C. Hopkinson, K.W.M. Siu, J. Phys. Chem. A 108, 3844 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Tamuliene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamuliene, J., Romanova, L., Vukstich, V. et al. Electron-impact-induced tryptophan molecule fragmentation. Eur. Phys. J. D 69, 21 (2015). https://doi.org/10.1140/epjd/e2014-50551-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50551-2

Keywords

Navigation