Advertisement

Ultrasensitive 3He magnetometer for measurements of high magnetic fields

  • Anna Nikiel
  • Peter Blümler
  • Werner Heil
  • Manfred Hehn
  • Sergej Karpuk
  • Andreas Maul
  • Ernst Otten
  • Laura M. Schreiber
  • Maxim Terekhov
Regular Article

Abstract

We describe a 3He magnetometer capable to measure high magnetic fields (B> 0.1 T) with a relative accuracy of better than 10-12. Our approach is based on the measurement of the free induction decay of gaseous, nuclear spin polarized 3He following a resonant radio frequency pulse excitation. The measurement sensitivity can be attributed to the long coherent spin precession time T2 being of order minutes which is achieved for spherical sample cells in the regime of “motional narrowing” where the disturbing influence of field inhomogeneities is strongly suppressed. The 3He gas is spin polarized in situ using a new, non-standard variant of the metastability exchange optical pumping. We show that miniaturization helps to increase T2 further and that the measurement sensitivity is not significantly affected by temporal field fluctuations of order 10-4.

Keywords

Atomic Physics 

References

  1. 1.
    G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006) CrossRefADSGoogle Scholar
  2. 2.
    X. Fei, V.W. Hughes, R. Prigl, Nucl. Instrum. Methods A 394, 349 (1997) CrossRefADSGoogle Scholar
  3. 3.
    H.J. Kluge, Eur. J. Mass Spectrom. 16, 269 (2010) CrossRefGoogle Scholar
  4. 4.
    L.F. Fuks, F.S.C. Huang, C.M. Carter, W.A. Edelstein, B.P. Roemer, J. Magn. Reson. 100, 229 (1992) ADSGoogle Scholar
  5. 5.
    C. Barmet, N. de Zanche, B.J. Wilm, K.P. Pruessmann, Magn. Reson. Med. 62, 269 (2009) CrossRefGoogle Scholar
  6. 6.
    S.A. Macintyre, in The Measurement, Instrumentation, and Sensors: Handbook, edited by J.G. Webster (Springer, 1999), p. 481 Google Scholar
  7. 7.
    C.P. Slichter, Principles of Magnetic Resonance, Springer series in solid-state sciences (Springer, 1996) Google Scholar
  8. 8.
    R. Prigl, U. Haeberlen, K. Jungmann, G. zu Putlitz, P. von Walter, Nucl. Instrum. Methods A 374, 118 (1996) CrossRefADSGoogle Scholar
  9. 9.
    A. Bornet, S. Jannin, J.A. Konter, P. Hautle, B. van den Brandt, G. Bodenhausen, J. Am. Chem. Soc. 133, 15644 (2011) CrossRefGoogle Scholar
  10. 10.
    J. Repp et al., Appl. Phys. B 107, 983 (2012) CrossRefADSGoogle Scholar
  11. 11.
    R. Kimmich, NMR Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997) Google Scholar
  12. 12.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall PTR, 1993) Google Scholar
  13. 13.
    C. Gemmel et al., Eur. Phys. J. D 57, 303 (2010) CrossRefADSGoogle Scholar
  14. 14.
    M.A. Rosenberry, T.E. Chupp, Phys. Rev. Lett. 86, 22 (2001) CrossRefADSGoogle Scholar
  15. 15.
    A.G. Glenday et al., Phys. Rev. Lett. 101, 261801 (2008) CrossRefADSGoogle Scholar
  16. 16.
    K. Shimoda, T.C. Wang, C.H. Townes, Phys. Rev. 102, 1308 (1956) CrossRefADSGoogle Scholar
  17. 17.
    J.L. Flowers, B.W. Petley, M.G. Richards, Metrologia 30, 75 (1993) CrossRefADSGoogle Scholar
  18. 18.
    G.D. Cates, S.R. Schaefer, W. Happer, Phys. Rev. A 37, 2877 (1988) CrossRefADSGoogle Scholar
  19. 19.
    J. Schmiedeskamp et al., Eur. Phys. J. D 38, 439 (2006) CrossRefADSGoogle Scholar
  20. 20.
    R. Barbé, M. Leduc, F. Laloë, J. Phys. France 35, 935 (1974) CrossRefGoogle Scholar
  21. 21.
    D.I. Hoult, R.E. Richards, J. Magn. Reson. 24, 71 (1976) ADSGoogle Scholar
  22. 22.
    J.F. Schenck, Med. Phys. 23, 815 (1996) CrossRefGoogle Scholar
  23. 23.
    L.D. Schearer, F.D. Colegrove, G.K. Walters, Phys. Rev. Lett. 10, 108 (1963) CrossRefADSGoogle Scholar
  24. 24.
    E. Courtade et al., Eur. Phys. J. D 21, 25 (2002) CrossRefADSGoogle Scholar
  25. 25.
    A. Nikiel-Osuchowska et al., Eur. Phys. J. D 67, 200 (2013) CrossRefADSGoogle Scholar
  26. 26.
    F.D. Colegrove, L.D. Schearer, G.K. Walters, Phys. Rev. 135, A353 (1964) CrossRefADSGoogle Scholar
  27. 27.
    W.A. Fitzsimmons, N.F. Lane, G.K. Walters, Phys. Rev. 174, 193 (1968) CrossRefADSGoogle Scholar
  28. 28.
    M. Himbert et al., J. Phys. Lett. 44, 523 (1983) CrossRefGoogle Scholar
  29. 29.
    R. Barbé, F. Laloë, J. Brossel, Phys. Rev. Lett. 34, 1488 (1975) CrossRefADSGoogle Scholar
  30. 30.
    M. Abboud et al., Laser Phys. 15, 475 (2005) ADSGoogle Scholar
  31. 31.
    M. Abboud, A. Sinatra, X. Maître, G. Tastevin, P.-J. Nacher, Europhys. Lett. 68, 480 (2004) CrossRefADSGoogle Scholar
  32. 32.
    R. Kc, Y.N. Gowda, D. Djukovic, I.D. Henry, G.H.J. Park, D. Raftery, J. Magn. Reson. 205, 63 (2010) CrossRefADSGoogle Scholar
  33. 33.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961) Google Scholar
  34. 34.
    N. Bloembergen, R.V. Pound, Phys. Rev. 95, 8 (1954) CrossRefADSGoogle Scholar
  35. 35.
    H.D.W. Hill, R.E. Richards, J. Phys. E 1, 977 (1968) CrossRefADSGoogle Scholar
  36. 36.
    M. Guéron, Magn. Reson. Med. 19, 31 (1991) CrossRefGoogle Scholar
  37. 37.
    P.T. Callaghan, J. Magn. Reson. 87, 304 (1990) ADSGoogle Scholar
  38. 38.
    J.A. Barnes et al., IEEE Trans. Instrum. Meas. 20, 105 (1971) CrossRefGoogle Scholar
  39. 39.
    P. Lesage, C. Audoin, IEEE Trans. Instrum. Meas. 22, 157 (1973) CrossRefGoogle Scholar
  40. 40.
    Y. Chibane, S.K. Lamoreaux, J.M. Pendlebury, K.F. Smith, Meas. Sci. Technol. 6, 1671 (1995) CrossRefADSGoogle Scholar
  41. 41.
    D.W. Robinson, in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques, edited by D.W. Robinson, G.T. Reid (Institute of Physics, Bristol, 1993), pp. 194–229 Google Scholar
  42. 42.
    N. De Zanche, Ch. Barmet, J.A. Nordmeyer-Massner, K.P. Pruessmann, Magn. Reson. Med. 60, 176 (2008) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anna Nikiel
    • 1
    • 2
  • Peter Blümler
    • 1
  • Werner Heil
    • 1
  • Manfred Hehn
    • 3
  • Sergej Karpuk
    • 1
  • Andreas Maul
    • 1
  • Ernst Otten
    • 1
  • Laura M. Schreiber
    • 4
  • Maxim Terekhov
    • 4
  1. 1.Institute of Physics, Johannes Gutenberg-Universität MainzMainzGermany
  2. 2.Helmholtz-Institute MainzMainzGermany
  3. 3.MPI for Polymer Research, Ackermannweg 10MainzGermany
  4. 4.University Medical Center Mainz Langenbeckstrasse 1MainzGermany

Personalised recommendations