Advertisement

First principle investigations on the superhalogen behaviour of RuOn (n = 1–5) species

Regular Article

Abstract

Density functional approach has been employed to investigate the ground state geometries and stabilities of RuO n species (n = 1 to 5) in neutral as well as in anionic forms. It is shown that Ru can bind stably with four O atoms indicating the maximum oxidation state of Ru as high as +8. The adiabatic electron affinities of RuO n reveal the superhalogen behaviour of RuO4. The interaction of RuO4 superhalogen with an alkaline metal Ca forms a stable CaRuO4 complex. In this complex, RuO4 unit closely mimics the behaviour of O atom when compared with CaO. This provides an opportunity to synthesize new class of complex compounds by interaction of RuO4 with appropriate metal atom.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    G.L. Gutsev, A.I. Boldyrev, Chem. Phys. 56, 277 (1981)CrossRefADSGoogle Scholar
  2. 2.
    G.L. Gutsev, A.I. Boldyrev, Chem. Phys. Lett. 101, 441 (1983)CrossRefADSGoogle Scholar
  3. 3.
    G.L. Gutsev, A.I. Boldyrev, Chem. Phys. Lett. 108, 250 (1984)CrossRefADSGoogle Scholar
  4. 4.
    C. Paduani, P. Jena, J. Phys. Chem. A 116, 1469 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Sikorska, P. Skurski, Mol. Phys. 110, 1447 (2012)CrossRefADSGoogle Scholar
  6. 6.
    S. Freza, P. Skurski, Chem. Phys. Lett. 487, 19 (2010)CrossRefADSGoogle Scholar
  7. 7.
    M. Willis, M. Gotz, A.K. Kandalam, G.F. Gantefor, P. Jena, Angew. Chem. Int. Ed. 49, 8966 (2010)CrossRefGoogle Scholar
  8. 8.
    M.M. Wu, H. Wang, Y.J. Ko, Q. Wang, Q. Sun, B. Kiran, A.K. Kandalam, K.H. Bowen, P. Jena, Angew. Chem. Int. Ed. 50, 2568 (2011)CrossRefGoogle Scholar
  9. 9.
    A.N. Alexandrova, A.I. Boldyrev, Y.J. Fu, X. Yang, X.B. Wang, L.S. Wang, J. Chem. Phys. 121, 5709 (2004)CrossRefADSGoogle Scholar
  10. 10.
    N. Bartlett, Proc. Chem. Soc. 6, 218 (1962)Google Scholar
  11. 11.
    C. Sikorska, P. Skurski, Inorg. Chem. 50, 6384 (2011)CrossRefGoogle Scholar
  12. 12.
    S.J. Wang, Y. Li, Y.F. Wang, D. Wu, Z.R. Lia, Phys. Chem. Chem. Phys. 15, 12903 (2013)CrossRefGoogle Scholar
  13. 13.
    D.A. Knight, R. Zidan, R. Lascola, R. Mohtadi, C. Ling, P.K. Sivasubramanian, J.A. Kaduk, S.J. Hwang, D. Samanta, P. Jena, J. Phys. Chem. C 117, 19905 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Marchaj, S. Freza, O. Rybacka, P. Skurski, Chem. Phys. Lett. 574, 13 (2013)CrossRefADSGoogle Scholar
  15. 15.
    A.K. Srivastava, N. Misra, New J. Chem. 38, 2890 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Koirala, M. Willis, B. Kiran, A.K. Kandalam, P. Jena, J. Phys. Chem. C 114, 16018 (2010)CrossRefGoogle Scholar
  17. 17.
    S.A. Siddiqui, A.K. Pandey, T. Rasheed, M. Mishra, J. Fluorine Chem. 135, 285 (2012)CrossRefGoogle Scholar
  18. 18.
    A.K. Srivastava, N. Misra, J. Fluorine Chem. 158, 65 (2014)CrossRefGoogle Scholar
  19. 19.
    R.N. Compton, P.W. Reinhardt, J. Chem. Phys. 72, 4655 (1980)CrossRefADSGoogle Scholar
  20. 20.
    O. Graudejus, S.H. Elder, G.M. Lucier, C. Shen, N. Bartlett, Inorg. Chem. 38, 2503 (1999)CrossRefGoogle Scholar
  21. 21.
    G.M. Lucier, C. Shen, S.H. Elder, N. Bartlett, Inorg. Chem. 37, 3829 (1998)CrossRefGoogle Scholar
  22. 22.
    G.L. Gutsev, B.K. Rao, P. Jena, X.B. Wang, L.S. Wang, Chem. Phys. Lett. 312, 598 (1991)CrossRefADSGoogle Scholar
  23. 23.
    G.L. Gutsev, B.K. Rao, P. Jena, J. Phys. Chem. A 103, 10819 (1999)CrossRefGoogle Scholar
  24. 24.
    G.L. Gutsev, S.N. Khanna, B.K. Rao, P. Jena, Phys. Rev. A 59, 3681 (1999)CrossRefADSGoogle Scholar
  25. 25.
    G.L. Gutsev, C.A. Weatherford, K. Pradhan, P. Jena, J. Comput. Chem. 32, 2974 (2011)CrossRefGoogle Scholar
  26. 26.
    A.K. Srivastava, N. Misra, Int. J. Quantum Chem. 114, 328 (2014)CrossRefGoogle Scholar
  27. 27.
    A.K. Srivastava, N. Misra, Int. J. Quantum Chem. 114, 521 (2014)CrossRefGoogle Scholar
  28. 28.
    A.K. Srivastava, N. Misra, Mol. Phys. 112, 1639 (2014)CrossRefADSGoogle Scholar
  29. 29.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefADSGoogle Scholar
  30. 30.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)CrossRefADSGoogle Scholar
  31. 31.
    F. Neese, Coord. Chem. Rev. 253, 526 (2009)CrossRefGoogle Scholar
  32. 32.
    S.F. Sousa, P.A. Fernandes, M.J. Ramos, J. Phys. Chem. A 111, 10439 (2007)CrossRefGoogle Scholar
  33. 33.
    K.E. Riley, B.T. Opt Holt, K.M. Merz Jr., J. Chem. Theor. Comput. 3, 407 (2007)CrossRefGoogle Scholar
  34. 34.
    M.J. Frisch, Gaussian 09, Revision B.01 (Gaussian Inc., Wallingford CT, 2010)Google Scholar
  35. 35.
    A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735 (1985)CrossRefADSGoogle Scholar
  36. 36.
    E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO. 3.1 Program (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 1996)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of LucknowLucknowIndia

Personalised recommendations