General linear response formula for non integrable systems obeying the Vlasov equation

Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation


Long-range interacting N-particle systems get trapped into long-living out-of-equilibrium stationary states called quasi-stationary states (QSS). We study here the response to a small external perturbation when such systems are settled into a QSS. In the N → ∞ limit the system is described by the Vlasov equation and QSS are mapped into stable stationary solutions of such equation. We consider this problem in the context of a model that has recently attracted considerable attention, the Hamiltonian mean field (HMF) model. For such a model, stationary inhomogeneous and homogeneous states determine an integrable dynamics in the mean-field effective potential and an action-angle transformation allows one to derive an exact linear response formula. However, such a result would be of limited interest if restricted to the integrable case. In this paper, we show how to derive a general linear response formula which does not use integrability as a requirement. The presence of conservation laws (mass, energy, momentum, etc.) and of further Casimir invariants can be imposed a posteriori. We perform an analysis of the infinite time asymptotics of the response formula for a specific observable, the magnetization in the HMF model, as a result of the application of an external magnetic field, for two stationary stable distributions: the Boltzmann-Gibbs equilibrium distribution and the Fermi-Dirac one. When compared with numerical simulations the predictions of the theory are very good away from the transition energy from inhomogeneous to homogeneous states.


Vlasov Equation Liouville Operator Linear Response Theory Unperturbed State Mass Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009) MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Long-range interacting Systems, edited by T. Dauxois, S. Ruffo, L. Cugliandolo (Oxford University Press, 2010) Google Scholar
  3. 3.
    Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004) CrossRefADSGoogle Scholar
  4. 4.
    R. Balescu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College Press, London, 1997) Google Scholar
  5. 5.
    D.R. Nicholson, Introduction to Plasma Physics (Krieger Publishing Company, Florida, 1992) Google Scholar
  6. 6.
    W. Braun, K. Hepp, Commun. Math. Phys. 56, 101 (1977) MathSciNetCrossRefMATHADSGoogle Scholar
  7. 7.
    A. Patelli, C. Nardini, S. Gupta, S. Ruffo, Phys. Rev. E 85, 021133 (2012) CrossRefADSGoogle Scholar
  8. 8.
    S. Ogawa, Y.Y. Yamaguchi, Phys. Rev. E 85, 061115 (2012) CrossRefADSGoogle Scholar
  9. 9.
    P.H. Chavanis, Eur. Phys. J. Plus 128, 38 (2013) CrossRefGoogle Scholar
  10. 10.
    L. Landau, J. Phys. USSR 10, 25 (1946) MATHGoogle Scholar
  11. 11.
    C. Nardini, S. Gupta, S. Ruffo, T. Dauxois, F. Bouchet, J. Stat. Mech. 2012, L01002 (2012) Google Scholar
  12. 12.
    C. Nardini, S. Gupta, S. Ruffo, T. Dauxois, F. Bouchet, J. Stat. Mech. 2012, P12010 (2012) MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Barré, A. Olivetti, Y.Y. Yamaguchi, J. Phys. A 45, 1 (2012) CrossRefGoogle Scholar
  14. 14.
    P.J. Morrison, Z. Natur. 42a, 1115 (1987) Google Scholar
  15. 15.
    J. Messer, H. Spohn, J. Stat. Phys. 29, 561 (1982) MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    S. Inagaki, T. Konishi, Publ. Astro. Soc. J. 45, 733 (1993) ADSGoogle Scholar
  17. 17.
    M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995) CrossRefADSGoogle Scholar
  18. 18.
    J.H. Jeans, Problems of Cosmogony and Stellar Dynamics (Cambridge University Press, Cambridge, 1919) Google Scholar
  19. 19.
    R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957) MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    R. Pakter, Y. Levin, J. Stat. Phys. 150, 531 (2013) MathSciNetCrossRefMATHADSGoogle Scholar
  21. 21.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness (Academic Press, 1975) Google Scholar
  22. 22.
    T. Kato, Perturbation Theory for Linear Operators (Springer-Verlag, 1980) Google Scholar
  23. 23.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis (Cambrige University Press, 1915) Google Scholar
  24. 24.
    O. Penrose, Phys. Fluids 3, 258 (1960) CrossRefMATHADSGoogle Scholar
  25. 25.
    S. Ogawa, Phys. Rev. E 87, 062107 (2013) CrossRefADSGoogle Scholar
  26. 26.
    D.D. Holm, J.E. Marsden, T. Ratiu, A. Weinstein, Phys. Rep. 123, 1 (1985) MathSciNetCrossRefMATHADSGoogle Scholar
  27. 27.
    M. Kac, Phys. Fluids 2, 8 (1959) CrossRefMATHADSGoogle Scholar
  28. 28.
    A. Campa, P.H. Chavanis, J. Stat. Mech. 2010, P06001 (2010) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CEA – Service de Physique de l’État condenséGif-sur-YvetteFrance
  2. 2.Dipartimento di Fisica e Astronomia and CSDC, Università degli Studi di FirenzeSesto FiorentinoItaly

Personalised recommendations