Skip to main content
Log in

Phase space structures in gyrokinetic simulations of fusion plasma turbulence

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Gyrokinetic simulations of fusion plasmas give extensive information in 5D on turbulence and transport. This paper highlights a few of these challenging physics in global, flux driven simulations using experimental inputs from Tore Supra shot TS45511. The electrostatic gyrokinetic code GYSELA is used for these simulations. The 3D structure of avalanches indicates that these structures propagate radially at localised toroidal angles and then expand along the field line at sound speed to form the filaments. Analysing the poloidal mode structure of the potential fluctuations (at a given toroidal location), one finds that the low modes m = 0 and m = 1 exhibit a global structure; the magnitude of the m = 0 mode is much larger than that of the m = 1 mode. The shear layers of the corrugation structures are thus found to be dominated by the m = 0 contribution, that are comparable to that of the zonal flows. This global mode seems to localise the m = 2 mode but has little effect on the localisation of the higher mode numbers. However when analysing the pulsation of the latter modes one finds that all modes exhibit a similar phase velocity, comparable to the local zonal flow velocity. The consequent dispersion like relation between the modes pulsation and the mode numbers provides a means to measure the zonal flow. Temperature fluctuations and the turbulent heat flux are localised between the corrugation structures. Temperature fluctuations are found to exhibit two scales, small fluctuations that are localised by the corrugation shear layers, and appear to bounce back and forth radially, and large fluctuations, also readily observed on the flux, which are associated to the disruption of the corrugations. The radial ballistic velocity of both avalanche events if of the order of 0.5ρ c 0 where ρ = ρ 0/a, a being the tokamak minor radius and ρ 0 being the characteristic Larmor radius, ρ 0 = c 0/Ω 0. c 0 is the reference ion thermal velocity and Ω 0 = q i B 0/m i the reference ion Larmor frequency for the characteristic amplitude of the magnetic field B 0, q i and m i being, respectively, the ion charge and mass. The electric drift velocity is also found to exhibit a poloidal pattern, with maximum amplitude of the fluctuations either in the top or in the bottom regions of the machine depending on the sign of the zonal flow shear. This effect is found to be correlated to the stopping capability of the corrugation structures. The neoclassical properties stemming from the trapped particle drifts lead to large distortion of the distribution function. As expected, these prevail at the outer part of the simulation region despite the large collisionality. The distribution function fluctuations appear to be aligned along the v = const. lines at constant poloidal angle. A specific symmetry is observed regarding the interplay of turbulence with the trapped-passing region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shimada, D. Campbell, V. Mukhovatov, M. Fujiwara, N. Kirneva, K. Lackner, M. Nagami, V. Pustovitov, N. Uckan, J. Wesley, N. Asakura, A. Costley, A. Donn, E. Doyle, A. Fasoli, C. Gormezano, Y. Gribov, O. Gruber, T. Hender, W. Houlberg, S. Ide, Y. Kamada, A. Leonard, B. Lipschultz, A. Loarte, K. Miyamoto, V. Mukhovatov, T. Osborne, A. Polevoi, A. Sips, Nucl. Fusion 47, S1 (2007)

    Article  ADS  Google Scholar 

  2. X. Garbet, Y. Idomura, L. Villard, T. Watanabe, Nucl. Fusion 50, 043002 (2010)

    Article  ADS  Google Scholar 

  3. A.J. Brizard, T.S. Hahm, Rev. Mod. Phys. 79, 421 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. V. Grandgirard, Y. Sarazin, P. Angelino, A. Bottino, N. Crouseilles, G. Darmet, G. Dif-Pradalier, X. Garbet, P. Ghendrih, S. Jolliet, G. Latu, E. Sonnendrcker, L. Villard, Plasma Phys. Control. Fusion 49, B173 (2007)

    Article  ADS  Google Scholar 

  5. Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, P. Ghendrih, G. Latu, A. Strugarek, G. Dif-Pradalier, Nucl. Fusion 50, 054004 (2010)

    Article  ADS  Google Scholar 

  6. B.A. Carreras, D. Newman, V.E. Lynch, P.H. Diamond, Phys. Plasmas 3, 2903 (1996)

    Article  ADS  Google Scholar 

  7. X. Garbet, R.E. Waltz, Phys. Plasmas 5, 2836 (1998)

    Article  ADS  Google Scholar 

  8. Y. Sarazin, P. Ghendrih, Phys. Plasmas 5, 4214 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Tokunaga, H. Jhang, S.S. Kim, P.H. Diamond, Phys. Plasmas 19, 092303 (2012)

    Article  ADS  Google Scholar 

  10. P.H. Diamond, S.I. Itoh, K. Itoh, T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005)

    Article  ADS  Google Scholar 

  11. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  12. Y. Sarazin, X. Garbet, P. Ghendrih, S. Benkadda, Phys. Plasmas 7, 1085 (2000)

    Article  ADS  Google Scholar 

  13. J. Candy, R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003)

    Article  ADS  Google Scholar 

  14. B.F. McMillan, S. Jolliet, T.M. Tran, L. Villard, A. Bottino, P. Angelino, Phys. Plasmas 16, 022310 (2009)

    Article  ADS  Google Scholar 

  15. Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49, 065029 (2009)

    Article  ADS  Google Scholar 

  16. G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, P. Ghendrih, A. Strugarek, S. Ku, C.S. Chang, Phys. Rev. E 82, 025401 (2010)

    Article  ADS  Google Scholar 

  17. G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, P. Ghendrih, G. Latu, A. Strugarek, S. Ku, C.S. Chang, Phys. Plasmas 18, 062309 (2011)

    Article  ADS  Google Scholar 

  18. J. Abiteboul, X. Garbet, V. Grandgirard, S.J. Allfrey, P. Ghendrih, G. Latu, Y. Sarazin, A. Strugarek, Phys. Plasmas 18, 082503 (2011)

    Article  ADS  Google Scholar 

  19. G. Darmet, P. Ghendrih, Y. Sarazin, X. Garbet, V. Grandgirard, Commun. Nonlinear Sci. Num. Simul. 13, 53 (2008)

    Article  MATH  Google Scholar 

  20. Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, P. Ghendrih, G. Latu, A. Strugarek, G. Dif-Pradalier, P. Diamond, S. Ku, C. Chang, B. McMillan, T. Tran, L. Villard, S. Jolliet, A. Bottino, P. Angelino, Nucl. Fusion 51, 103023 (2011)

    Article  ADS  Google Scholar 

  21. P. Duperrex, A. Pochelon, A. Edwards, J. Snipes, Nucl. Fusion 32, 1161 (1992)

    Article  ADS  Google Scholar 

  22. T. Dudok de Wit, A. Pecquet, J. Vallet, R. Lima, Phys. Plasmas 1, 3288 (1994)

    Article  ADS  Google Scholar 

  23. K.R. Sreenivasan, A. Bershadskii, J.J. Niemela, Phys. Rev. E 65, 056306 (2002)

    Article  ADS  Google Scholar 

  24. W. Lee, J. Leem, G.S. Yun, H.K. Park, J.A. Lee, Y.B. Nam, Y.U. Nam, W.H. Ko, J.H. Jeong, Y.S. Bae, H. Park, K.W. Kim, C.W. Domier, N.C. Luhmann Jr., J. Instrum. 8, C10018 (2013)

    Article  Google Scholar 

  25. P. Ghendrih, Y. Sarazin, G. Attuel, S. Benkadda, P. Beyer, G. Falchetto, C. Figarella, X. Garbet, V. Grandgirard, M. Ottaviani, Nucl. Fusion 43, 1013 (2003)

    Article  ADS  Google Scholar 

  26. J. Abiteboul, P. Ghendrih, V. Grandgirard, T. Cartier-Michaud, G. Dif-Pradalier, X. Garbet, G. Latu, C. Passeron, Y. Sarazin, A. Strugarek, O. Thomine, D. Zarzoso, Plasma Phys. Control. Fusion 55, 074001 (2013)

    Article  ADS  Google Scholar 

  27. N. Fedorczak, J. Gunn, P. Ghendrih, P. Monier-Garbet, A. Pocheau, J. Nucl. Mater. 390-391, 368 (2009)

    Article  ADS  Google Scholar 

  28. N. Fedorczak, J. Gunn, P. Ghendrih, G. Ciraolo, H. Bufferand, L. Isoardi, P. Tamain, P. Monier-Garbet, J. Nucl. Mater. 415, S467 (2011)

    Article  ADS  Google Scholar 

  29. N. Fedorczak, J.P. Gunn, J.Y. Pascal, P. Ghendrih, G. van Oost, P. Monier-Garbet, G.R. Tynan, Phys. Plasmas 19, 072314 (2012)

    Article  ADS  Google Scholar 

  30. L. Villard, P. Angelino, A. Bottino, S.J. Allfrey, R. Hatzky, Y. Idomura, O. Sauter, T.M. Tran, Plasma Phys. Control. Fusion 46, B51 (2004)

    Article  Google Scholar 

  31. E. Floriani, G. Ciraolo, P. Ghendrih, R. Lima, Y. Sarazin, Plasma Phys. Control. Fusion 55, 095012 (2013)

    Article  ADS  Google Scholar 

  32. B.B. Kadomtsev, O.P. Porgutse, Rev. Plasma Phys. 5, 249 (1970)

    Article  ADS  Google Scholar 

  33. J. Abiteboul, P. Ghendrih, V. Grandgirard, T. Cartier-Michaud, G. Dif-Pradalier, X. Garbet, G. Latu, C. Passeron, Y. Sarazin, A. Strugarek, O. Thomine, D. Zarzoso, J. Phys.: Conf. Ser. 401, 012007 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ghendrih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghendrih, P., Norscini, C., Cartier-Michaud, T. et al. Phase space structures in gyrokinetic simulations of fusion plasma turbulence. Eur. Phys. J. D 68, 303 (2014). https://doi.org/10.1140/epjd/e2014-50210-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50210-8

Keywords

Navigation