Skip to main content

Advertisement

Log in

Vlasov-kinetic computer simulations of electrostatic waves in dusty plasmas: an overview of recent results

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A series of numerical simulations based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories are presented. Electron-ion plasmas and three-component (electron-ion-dust) dusty or complex plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the linear and nonlinear behavior of ion-acoustic excitations is investigated. Maxwellian and kappa-type (superthermal) distribution functions are assumed, as initial conditions, in separate simulations for the sake of comparison. The focus is on the parametric dependence of ion-acoustic waves on the electron-to-ion temperature ratio and on the dust concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma physics (Plenum Press, New York, 1984)

  2. S.V. Vladimirov, K. Ostrikov, A.A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, 2005)

  3. D.A. Mendis, Plasma Sources Sci. Technol. 11, A219 (2002)

    Article  ADS  Google Scholar 

  4. P.K. Shukla, Phys. Plasmas 8, 1791 (2001)

    Article  ADS  Google Scholar 

  5. P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)

    Article  ADS  Google Scholar 

  6. D.D. Ryutov, Plasma Phys. Control. Fusion 41, A1 (1999)

    Article  ADS  Google Scholar 

  7. L.D. Landau, J. Phys. USSR 10, 25 (1946). [English translation in J. Exp. Theor. Phys. 16, 574. Reproduced in Collected papers of L.D. Landau, edited and with an introduction by D. ter Haar (Pergamon Press, 1965), pp. 445–460; and in Men of Physics: L.D. Landau, edited by D. ter Haar (Pergamon Press, 1965), Vol. 2]

    MATH  Google Scholar 

  8. C. Mouhot, C. Villani, Acta Math. 207, 29 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. T.M.O. Neil, Phys. Fluids 8, 2255 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  10. I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. C. Lancellotti, J.J. Dorning, Phys. Rev. Lett. 81, 5137 (1998)

    Article  ADS  Google Scholar 

  12. C. Lancellotti, J.J. Dorning, Phys. Rev. E 68, 026406 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. M.C. Firpo, Y. Elskens, Phys. Rev. Lett. 84, 3318 (2000)

    Article  ADS  Google Scholar 

  14. A.A. Vlasov, J. Exp. Theor. Phys. 8, 291 (1938)

    MATH  Google Scholar 

  15. A. Vlasov, Sov. Phys. Usp. 10, 721 (1968)

    Article  ADS  Google Scholar 

  16. C.Z. Cheng, G. Knorr, J. Comput. Phys. 22, 330 (1976)

    Article  ADS  Google Scholar 

  17. B. Eliasson, J. Comput. Phys. 225, 2 (2007)

    Article  MathSciNet  Google Scholar 

  18. F. Filbet, E. Sonnendrucker, P. Bertrand, J. Comput. Phys. 172, 166 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. F. Kazeminezhad, S. Kuhn, A. Tavakoli, Phys. Rev. E 67, 026704 (2003)

    Article  ADS  Google Scholar 

  20. T. Minoshima, Y. Matsumoto, T. Amano, J. Comput. Phys. 230, 6800 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. G. Manfredi, Phys. Rev. Lett. 79, 2815 (1997)

    Article  ADS  Google Scholar 

  22. V.M. Vasyliunas, J. Geophys. Res. 73, 2389 (1968)

    ADS  Google Scholar 

  23. B. Abraham-Shrauner, W.C. Feldman, J. Plasma Phys. 17, 123 (1977)

    Article  ADS  Google Scholar 

  24. B. Abraham-Shrauner, J.R. Asbridge, S.J. Bame, W.C. Feldman, J. Geophys. Res. 84, 553 (1979)

    Article  ADS  Google Scholar 

  25. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  26. M.A. Hellberg, R.L. Mace, R.J. Armstrong, G. Karlstad, J. Plasma Phys. 64, 433 (2000)

    Article  ADS  Google Scholar 

  27. M.V. Goldman, D.L. Newman, A. Mangeney, Phys. Rev. Lett. 99, 145002 (2007)

    Article  ADS  Google Scholar 

  28. G. Sarri, M.E. Dieckmann, C.R.D. Brown, C.A. Cecchetti, D.J. Hoarty, S.F. James, R. Jung, I. Kourakis, H. Schamel, O. Willi, M. Borghesi, Phys. Plasmas 17, 010701 (2010)

    Article  ADS  Google Scholar 

  29. V. Pierrard, M. Lazar, Sol. Phys. 267, 153 (2010)

    Article  ADS  Google Scholar 

  30. G. Livadiotis, D.J. McComas, J. Geophys. Res. 114, 11105 (2009)

    Article  Google Scholar 

  31. G. Livadiotis, D.J. McComas, ApJ 714, 971 (2010)

    Article  ADS  Google Scholar 

  32. I. Kourakis, S. Sultana, M.A. Hellberg, Plasma Phys. Control. Fusion 54, 124001 (2012)

    Article  ADS  Google Scholar 

  33. R.L. Mace, M.A. Hellberg, Phys. Plasmas 16, 072113 (2009)

    Article  ADS  Google Scholar 

  34. T.K. Baluku, M.A. Hellberg, in Proc. 39th EPS Conf. on Plasma Phys. & 16th Int. Congress on Plasma Phys., Stockholm, Sweden, 2012, paper P5.176, http://ocs.ciemat.es/EPSICPP2012ABS/pdf/P5.176.pdf

  35. S.M. Hosseini Jenab, I. Kourakis, H. Abbasi, Phys. Plasmas 18, 073703 (2011)

    Article  ADS  Google Scholar 

  36. G. Sarri, M.E. Dieckmann, I. Kourakis, M. Borghesi, Phys. Rev. Lett. 107, 025003 (2011)

    Article  ADS  Google Scholar 

  37. M.E. Dieckmann, A. Bret, G. Sarri, E. Perez Alvaro, I. Kourakis, M. Borghesi, Plasma Phys. Control. Fusion 54, 085015 (2012)

    Article  ADS  Google Scholar 

  38. M.E. Dieckmann, G. Sarri, G.C. Murphy, A. Bret, L. Romagnani, I. Kourakis, M. Borghesi, A. Ynnerman, L.O.C. Drury, New J. Phys. 14, 023007/1-19 (2012)

    Article  ADS  Google Scholar 

  39. H. Abbasi, M.H. Jenab, H. Hakimi Pajouh, Phys. Rev. E 84, 036702 (2011)

    Article  ADS  Google Scholar 

  40. M.A. Hellberg, R.L. Mace, T.K. Baluku, I. Kourakis, N.S. Saini, Phys. Plasmas 16, 094701 (2009)

    Article  ADS  Google Scholar 

  41. M.-J. Lee, Curr. Appl. Phys. 10, 1340 (2010)

    Article  ADS  Google Scholar 

  42. M.A. Hellberg, private communication

  43. S.M. Hosseini Jenab, M.A. Hellberg, I. Kourakis, in preparation

  44. S.M. Hosseini Jenab, T. Baluku, M.A. Hellberg, I. Kourakis, in International Topical Conference in Plasma Science – ITCPS 2012, Faro, Portugal

  45. M. Tribeche, R. Hamdi, T.H. Zerguini, Phys. Plasmas 7, 4013 (2000)

    Article  ADS  Google Scholar 

  46. S.M. Hosseini Jenab, I. Kourakis, Phys. Plasmas 21, 043701 (2014)

    Article  ADS  Google Scholar 

  47. M.-J. Lee, Phys. Plasmas 14, 032112 (2007)

    Article  ADS  Google Scholar 

  48. M.-J. Lee, J. Korean Phys. Soc. 46, 5 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mehdi Hosseini Jenab.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Vlasov Equation”, edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenab, S.M.H., Kourakis, I. Vlasov-kinetic computer simulations of electrostatic waves in dusty plasmas: an overview of recent results. Eur. Phys. J. D 68, 219 (2014). https://doi.org/10.1140/epjd/e2014-50177-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50177-4

Keywords

Navigation