Advertisement

A gyro-kinetic model for trapped electron and ion modes

  • Thomas Drouot
  • Etienne Gravier
  • Thierry Reveille
  • Alain Ghizzo
  • Pierre Bertrand
  • Xavier Garbet
  • Yanick Sarazin
  • Thomas Cartier-Michaud
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation

Abstract

In tokamak plasmas, it is recognized that ITG (ion temperature gradient instability) and trapped electron modes (TEM) are held responsible for turbulence giving rise to anomalous transport. The present work focuses on the building of a model including trapped kinetic ions and trapped kinetic electrons. For this purpose, the dimensionality is reduced by averaging the motion over the cyclotron motion and the “banana” orbits, according to the fact that the instabilities are characterized by frequencies of the order of the low trapped particle precession frequency. Moreover, a set of action-angle variables is used. The final model is 4D (two-dimensional phase space parametrized by the two first adiabatic invariants namely the particle energy and the trapping parameter). In this paper, the trapped ion and electron modes (TIM and TEM) are studied by using a linear analysis of the model. This work is currently performed in order to include trapped electrons in an existing semi lagrangian code for which TIM modes are already taken into account. This study can be considered as a first step in order to include kinetic trapped electrons in the 5D gyrokinetic code GYSELA [J. Abiteboul et al., ESAIM Proc. 32, 103 (2011)].

Keywords

Trap Electron Vlasov Equation Trap Particle Instability Threshold Larmor Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Horton, Rev. Mod. Phys. 71, 735 (1999)CrossRefADSGoogle Scholar
  2. 2.
    L. Villard et al., Nucl. Fusion 44, 172 (2004)CrossRefADSGoogle Scholar
  3. 3.
    X. Garbet, Plasma Phys. Control. Fusion 43, 251 (2001)CrossRefADSGoogle Scholar
  4. 4.
    T. Dannert, F. Jenko, Phys. Plasmas 12, 072309 (2005)CrossRefADSGoogle Scholar
  5. 5.
    X. Garbet et al., Nucl. Fusion 50, 043002 (2010)CrossRefADSGoogle Scholar
  6. 6.
    A. Ghizzo et al., Transport Theo. Stat. Phys. 40, 382 (2011)CrossRefMATHADSGoogle Scholar
  7. 7.
    A.H. Boozer, Rev. Mod. Phys. 76, 1071 (2004)CrossRefADSGoogle Scholar
  8. 8.
    P. Bellan, in Fundamentals of Plasma Physics (Cambridge University Press, 2006), p. 75Google Scholar
  9. 9.
    G. Depret et al., Plasma Phys. Control. Fusion 42, 949 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Y. Sarazin et al., Plasma Phys. Control. Fusion 47, 1817 (2005)CrossRefADSGoogle Scholar
  11. 11.
    A. Ghizzo et al., Phys. Plasmas 17, 092501 (2010)CrossRefADSGoogle Scholar
  12. 12.
    X. Garbet et al., J. Comput. Phys. 87, 249 (1990)MathSciNetCrossRefMATHADSGoogle Scholar
  13. 13.
    B. Kadomtsev, O.P. Pogutse, Rev. Plasma Phys. 5, 249 (1970)CrossRefADSGoogle Scholar
  14. 14.
    M. Abramowitz, A. Stegun, in Handbook of mathematical functions (Dover Publications, 1964), p. 590Google Scholar
  15. 15.
    L. Wang et al., Phys. Plasmas 16, 062309 (2010)CrossRefADSGoogle Scholar
  16. 16.
    B.D. Fried, S.D. Conte, The Plasma Dispersion Function (Academic Press, New York, 1961)Google Scholar
  17. 17.
    J.D. Huba, in Naval Research Laboratory Plasma Formulary (The office of Naval Research, 2011), p. 30Google Scholar
  18. 18.
    J.C. Lagarias et al., SIAM J. Opt. 9, 112 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    F. Romanelli, S. Briguglio, Phys. Fluids B 2, 754 (1990)CrossRefADSGoogle Scholar
  20. 20.
    F. Romanelli, Phys. Fluids B 5, 1018 (1989)CrossRefADSGoogle Scholar
  21. 21.
    T. Cartier-Michaud et al., ESAIM Proc. 43, 274 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Abiteboul et al., ESAIM Proc. 32, 103 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Drouot
    • 1
  • Etienne Gravier
    • 1
  • Thierry Reveille
    • 1
  • Alain Ghizzo
    • 1
  • Pierre Bertrand
    • 1
  • Xavier Garbet
    • 2
  • Yanick Sarazin
    • 2
  • Thomas Cartier-Michaud
    • 2
  1. 1.IJL, UMR 7198 CNRSUniversité de LorraineVandoeuvre-les-NancyFrance
  2. 2.CEA, IRFMSaint-Paul-Lèz-Durance CedexFrance

Personalised recommendations