Investigations of high-lying even-parity energy levels of atomic samarium using simultaneous observation of two-color laser-induced fluorescence and photoionization signals

  • M.L. Shah
  • A.C. Sahoo
  • A.K. Pulhani
  • G.P. Gupta
  • B.M. Suri
  • Vas Dev
Regular Article
  • 114 Downloads

Abstract

Laser-induced photoionization and fluorescence signals were simultaneously observed in atomic samarium using two Nd:YAG-pumped dye lasers. Two-color, three-photon photoionization and two-color fluorescence signals were recorded simultaneously under similar experimental conditions and their dependence as a function of the second-step laser power was studied to understand the behavior of these signals. The laser-induced fluorescence and photoionization techniques have been used simultaneously for the first time to understand the behavior of these signals so that these techniques can be used efficiently in complementary manner to investigate the high-lying energy levels. The even-parity energy levels of atomic samarium in the energy region 36 510–36 875 cm-1 have been investigated based on these experiments. Total 21 high-lying even-parity energy levels have been identified and the two energy levels amongst them are reported as new energy levels after comparing our results with those reported in the literature.

Keywords

Atomic Physics 

References

  1. 1.
    V.S. Letokhov, Laser Photoionization Spectroscopy (Academic Press, New York, 1987) Google Scholar
  2. 2.
    G.S. Hurst, M.G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, Bristol and Philadelphia, 1988) Google Scholar
  3. 3.
    L.R. Carlson, J.A. Paisner, E.F. Worden, S.A. Johnson, C.A. May, R.W. Solarz, J. Opt. Soc. Am. 66, 846 (1976) ADSCrossRefGoogle Scholar
  4. 4.
    M. Broglia, F. Catoni, P. Zampetti, J. Physique Coll. 44, C7-251 (1983) Google Scholar
  5. 5.
    V.K. Mago, B. Lal, A.K. Ray, R. Kapoor, S.D. Sharma, P.R.K. Rao, J. Phys. B 20, 6021 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    V.K. Mago, B. Lal, A.K. Ray, P.R.K. Rao, S.D. Sharma, J. Phys. B 20, 6531 (1987) ADSCrossRefGoogle Scholar
  7. 7.
    B.M. Suri, K. Dasgupta, P.N. Bajaj, K.G. Manohar, R. Talukdar, P.K. Chakraborti, P.R.K. Rao, J. Opt. Soc. Am. B 4, 1835 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    V.K. Mago, A.K. Ray, B. Lal, P.R.K. Rao, J. Phys. B 21, 955 (1988) ADSCrossRefGoogle Scholar
  9. 9.
    K. Dasgupta, K.G. Manohar, P.N. Bajaj, B.M. Suri, R.K. Talukdar, P.K. Chakraborti, P.R.K. Rao, J. Opt. Soc. Am. B 5, 1257 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    K.G. Manohar, P.N. Bajaj, B.M. Suri, R. Talukdar, K. Dasgupta, P.K. Charaborti, P.R.K. Rao, Appl. Phys. B 48, 525 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    M. Miyabe, I. Wakaida, T. Arisawa, J. Phys. B 29, 4073 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    M. Miyabe, I. Wakaida, J. Phys. B 30, 4193 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    M. Miyabe, M. Oba, I. Wakaida, J. Phys. B 33, 4957 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Kluge, B.A. Bushaw, G. Passler, G. Wendt, N. Trautmann, Fresenius J. Anal. Chem. 350, 323 (1994) CrossRefGoogle Scholar
  15. 15.
    M.L. Shah, P.K. Mandal, Vas Dev, B.M. Suri, J. Opt. Soc. Am. B 29, 1625 (2012) CrossRefGoogle Scholar
  16. 16.
    O. Kujirai, Y. Ogawa, J. Phys. Soc. Jpn 72, 1057 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    E. Miron, R. David, G. Erez, S. Lavi, L.A. Levin, J. Opt. Soc. Am. 69, 256 (1979) ADSCrossRefGoogle Scholar
  18. 18.
    A.K. Pulhani, M.L. Shah, V. Dev, B.M. Suri, J. Opt. Soc. Am. B 22, 1117 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    M.L. Shah, A.K. Pulhani, G.P. Gupta, B.M. Suri, J. Opt. Soc. Am. B 27, 423 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Jonghoon, J.T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, L. Jongmin, J. Korean Phys. Soc. 37, 707 (2000) Google Scholar
  21. 21.
    M.L. Shah, G.P. Gupta, Vas Dev, B. Dikshit, M.S. Bhatia, B.M. Suri, J. Opt. Soc. Am. B 29, 600 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    M.L. Shah, A.C. Sahoo, A.K. Pulhani, G.P. Gupta, B. Dikshit, M.S. Bhatia, B.M. Suri. J. Quant. Spectrosc. Radiat. Transfer 142, 9 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    H. Sufen, Z. Sen, M. Shimin, Q. Jizhen, C. Xing, J. Quant. Spectrosc. Radiat. Transfer 43, 75 (1990) ADSCrossRefGoogle Scholar
  24. 24.
    L. Jia, C. Jing, Z. Zhou, F. Lin, J. Opt. Soc. Am. B 10, 1317 (1993) ADSCrossRefGoogle Scholar
  25. 25.
    T. Jayashekharan, M.A.N. Razvi, G.L. Bhale, J. Opt. Soc. Am. B 13, 641 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    T. Jayashekharan, M.A.N. Razvi, G.L. Bhale, J. Opt. Soc. Am. B 17, 1607 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    A.I. Gomonai, O.I. Plekan, J. Phys. B: At. Mol. Opt. Phys. 36, 4155 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    J.W. Qin, C.J. Dai, Y. Xiao, Y.H. Zhao, Chin. Phys. B 18, 3384 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Y.H. Zhao, C.J. Dai, S.W. Yi, J. Phys. B: At. Mol. Opt. Phys. 44, 195001 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    M. Li, C.J. Dai, J. Xie, J. Quant. Spesctrosc. Radiat. Transfer 112, 793 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    M. Li, C.J. Dai, J. Xie, Chin. Phys. B 20, 0632049 (2011) Google Scholar
  32. 32.
    A.I. Gomonai, E.Y. Remeta, Opt. Spectrosc. 112, 15 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    K.B. Blagoev, V.A. Komarovskii, At. Data Nucl. Data Tables 56, 1 (1994) ADSCrossRefGoogle Scholar
  34. 34.
    E.A.D. Harttog, J.E. Lawler, J. Phys. B: At. Mol. Opt. Phys. 46, 185001 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M.L. Shah
    • 1
  • A.C. Sahoo
    • 1
  • A.K. Pulhani
    • 1
  • G.P. Gupta
    • 1
  • B.M. Suri
    • 1
  • Vas Dev
    • 1
  1. 1.Laser and Plasma Technology Division, Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations