Advertisement

Multiscale approach to the physics of radiation damage with ions

Colloquium
Part of the following topical collections:
  1. Topical Issue: Nano-scale Insights into Ion-beam Cancer Therapy

Abstract

The multiscale approach to the assessment of biodamage resulting upon irradiation of biological media with ions is reviewed, explained and compared to other approaches. The processes of ion propagation in the medium concurrent with ionization and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and develop an approach to the quantitative assessment of biological damage as a result of irradiation with ions. Presently, physical and chemical effects are included in the scenario while the biological effects such as DNA repair are only mentioned. This paper explains the scenario of radiation damage with ions, overviews its major parts, and applies the multiscale approach to different experimental conditions. On the basis of this experience, the recipe for application of the multiscale approach is formulated. The recipe leads to the calculation of relative biological effectiveness.

Keywords

Shock Wave Secondary Electron Double Strand Break Radiation Damage Bragg Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 373, 012001 (2012)ADSGoogle Scholar
  2. 2.
    I. Baccarelli, F. Gianturco, E. Scifoni, A.V. Solov’yov, E. Surdutovich, Eur. Phys. J. D 60, 1 (2010)ADSGoogle Scholar
  3. 3.
    U. Amaldi, G. Kraft, J. Radiat. Res. 48, A27 (2007)Google Scholar
  4. 4.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)ADSGoogle Scholar
  5. 5.
    M. Durante, J. Loeffler, Nat. Rev. Clin. Oncol. 7, 37 (2010)Google Scholar
  6. 6.
    Particle therapy co-operative group, accessed on 10/2014, http://www.ptcog.ch/index.php/facilities-in-operation
  7. 7.
    E. Haettner, H. Iwase, D. Schardt, Rad. Protec. Dosim. 122, 485 (2006)Google Scholar
  8. 8.
    L. Sihver, D. Schardt, T. Kanai, Jpn J. Med. Phys. 18, 1 (1998)Google Scholar
  9. 9.
    I. Pshenichnov, I. Mishustin, W. Greiner, Nucl. Instrum. Methods B 266, 1094 (2008)ADSGoogle Scholar
  10. 10.
    E. Surdutovich, O. Obolensky, E. Scifoni, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 63 (2009)ADSGoogle Scholar
  11. 11.
    E. Scifoni, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 81, 021903 (2010)ADSGoogle Scholar
  12. 12.
    A. Chatterjee, W.R. Holley, Adv. Radiat. Biol. 17, 181 (1993)Google Scholar
  13. 13.
    C. von Sonntag, The Chemical Basis of Radiation Biology (Taylor & Francis, London, 1987)Google Scholar
  14. 14.
    E. Surdutovich, D.C. Gallagher, A.V. Solov’yov, Phys. Rev. E 84, 051918 (2011)ADSGoogle Scholar
  15. 15.
    L. Sanche, Eur. Phys. J. D 35, 367 (2005)ADSGoogle Scholar
  16. 16.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSGoogle Scholar
  17. 17.
    M.A. Huels, B. Boudaïffa, P. Cloutier, D. Hunting, L. Sanche, JACS 125, 4467 (2003)Google Scholar
  18. 18.
    L. Sanche, Low-Eenergy Electron Interaction with DNA: Bond Dissociation and Formation of Transient Anions, Radicals, and Radical Anions, in Radical and Radical Ion Reactivity in Nucleic Acid Chemistry, edited by M. Greenberg (J. Wiley & Sons, Inc., New York, 2010), p. 239Google Scholar
  19. 19.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 206 (2012)ADSGoogle Scholar
  20. 20.
    S. McMahon et al., Sci. Rep. 1, 18 (2011)ADSGoogle Scholar
  21. 21.
    A.V. Solov’yov, E. Surdutovich, E. Scifoni, I. Mishustin, W. Greiner, Phys. Rev. E 79, 011909 (2009)ADSGoogle Scholar
  22. 22.
    Cost nano-ibct – nanoscale insights into ion beam cancer therapy, accessed on 10/2014, http://www.cost.eu/domains˙actions/mpns/Actions/nano-ibct/
  23. 23.
    E. Surdutovich, A.V. Solov’yov, Europhys. News 40, 21 (2009)ADSGoogle Scholar
  24. 24.
    E. Surdutovich, E. Scifoni, A.V. Solov’yov, Mutat. Res. 704, 206 (2010)Google Scholar
  25. 25.
    M. Toulemonde, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 80, 031913 (2009)ADSGoogle Scholar
  26. 26.
    E. Surdutovich, A. Yakubovich, A.V. Solov’yov, Eur. Phys. J. D 60, 101 (2010)ADSGoogle Scholar
  27. 27.
    E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 82, 051915 (2010)ADSGoogle Scholar
  28. 28.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Sci. Rep. 3, 1289 (2013)ADSGoogle Scholar
  29. 29.
    P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)ADSGoogle Scholar
  30. 30.
    M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, Int. J. Radiat. Oncol. 83, 442 (2012)Google Scholar
  31. 31.
    V. Semenenko, R. Stewart, Phys. Med. Biol. 51, 1693 (2006)Google Scholar
  32. 32.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, F.A. Cucinotta, Radiat. Meas. 41, 1052 (2006)Google Scholar
  33. 33.
    H. Nikjoo, C. Bolton, R. Watanabe, M. Terrisol, P. O’Neill, D. Goodhead, Radiat. Prot. Dosim. 99, 77 (2002)Google Scholar
  34. 34.
    W. Friedland, P. Jacob, P. Bernhardt, H. Paretzke, M. Dingfelder, Radiat. Res. 159, 401 (2003)Google Scholar
  35. 35.
    I. Plante, F. Cucinotta, Radiat. Environ. Biophys. 49, 5 (2010)Google Scholar
  36. 36.
    E.L. Alpen, Radiation Biophysics (Academic Press, 1998)Google Scholar
  37. 37.
    E.J. Hall, A.J. Giaccia, Radiobiology for Radiologist (Lippincott Williams & Wilkins, 2012)Google Scholar
  38. 38.
    S. Pimblott, L. Siebbeles, Nucl. Instrum. Methods B 194, 237 (2002)ADSGoogle Scholar
  39. 39.
    S. Pimblott, J. LaVerne, A. Mozumder, J. Phys. Chem. 100, 8595 (1996)Google Scholar
  40. 40.
    S. Pimblott, J. LaVerne, Rad. Phys. Chem. 76, 1244 (2007)ADSGoogle Scholar
  41. 41.
    J. Meesungnoen, J.P. Jay-Gerin, A. Filali-Mouhim, S. Mankhetkorn, Radiat. Res. 158, 657 (2002)Google Scholar
  42. 42.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 66, 245 (2012)Google Scholar
  43. 43.
    M. Bug, E. Surdutovich, H. Rabus, A.B. Rosenfeld, A.V. Solov’yov, Eur. Phys. J. D 66, 291 (2012)Google Scholar
  44. 44.
    Y. Park, Z. Li, P. Cloutier, L. Sanche, J. Wagner, Radiat. Res. 175, 240 (2011)Google Scholar
  45. 45.
    M. Smyth, J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)Google Scholar
  46. 46.
    D. Becker, A. Adhikary, M. Sevilla, Physicochemical mechanisms of radiation induced DNA damage, in Charged Particle and Photon Interactions with Matter Recent Advances, Applications, and Interfaces (CRC Press, Taylor & Francis, Boca Raton, 2010), Chap. 20Google Scholar
  47. 47.
    E. Surdutovich, A.V. Solov’yov, J. Phys.: Conf. Ser. 438, 012014 (2013)Google Scholar
  48. 48.
    H. Bethe, Ann. Phys. 397, 325 (1930)Google Scholar
  49. 49.
    F. Bloch, Z. Phys. A 81, 363 (1933)MATHGoogle Scholar
  50. 50.
    F. Bloch, Ann. Phys. 408, 285 (1933)Google Scholar
  51. 51.
    I. Abril, R. Garcia-Molina, C. Denton, I. Kyriakou, D. Emfietzoglou, Radiat. Res. 175, 247 (2011)Google Scholar
  52. 52.
    O. Obolensky, E. Surdutovich, I. Pshenichnov, I. Mishustin, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Methods B 266, 1623 (2008)ADSGoogle Scholar
  53. 53.
    M.E. Rudd, Y.K. Kim, D.H. Madison, T. Gay, Rev. Mod. Phys. 64, 441 (1992)ADSGoogle Scholar
  54. 54.
    L. Landau, E. Lifshitz, L. Pitaevskii, in Electrodynamics of Continuous Media, 2nd edn. (Butterworth-Heinemann, Burlington, 1984), Vol. 8Google Scholar
  55. 55.
    J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 28, 8 (1954)Google Scholar
  56. 56.
    Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004)ADSGoogle Scholar
  57. 57.
    M. Altarelli, D. Smith, Phys. Rev. B 9, 1290 (1974)ADSGoogle Scholar
  58. 58.
    R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, edited by G.G. Gómez-Tejedor, M.C. Fuss (Springer, Dordrecht, 2012), Chap. 15Google Scholar
  59. 59.
    R.H. Ritchie, A. Howie, Philos. Mag. 36, 436 (1977)Google Scholar
  60. 60.
    M. Dingfelder, D. Hantke, M. Inokuti, H. Paretzke, Radiat. Phys. Chem. 53, 1 (1999)ADSGoogle Scholar
  61. 61.
    D. Emfietzoglou, Radiat. Phys. Chem. 66, 373 (2003)ADSGoogle Scholar
  62. 62.
    P. Bernhardt, H.G. Paretzke, Int. J. Mass Spectrom. 223-224, 599 (2003)ADSGoogle Scholar
  63. 63.
    A. Peudon, S. Edel, M. Terrisol, Radiat. Prot. Dosim. 122, 128 (2006)Google Scholar
  64. 64.
    Y.K. Kim et al., Electron-impact ionization cross section for ionization and excitation database (version 3.0), accessed on 10/2014, http://www.nist.gov/pml/data/ionization/index.cfm
  65. 65.
    D.R. White, R.V. Griffith, I.J. Wilson, Photon, Electron, Proton and Neutron Interaction Data for Body Tissues (International Commission on Radiation Units and Measurements (ICRU 46), Bethesda, 1992)Google Scholar
  66. 66.
    W.E. Wilson, J.H. Miller, L.H. Toburen, S.T. Manson, J. Chem. Phys. 80, 5631 (1984)ADSGoogle Scholar
  67. 67.
    M. Rudd, T. Goffe, R. DuBois, L. Toburen, Phys. Rev. A 31, 492 (1985)ADSGoogle Scholar
  68. 68.
    M.A. Bolorizadeh, M.E. Rudd, Phys. Rev. A 33, 888 (1986)ADSGoogle Scholar
  69. 69.
    Y. Iriki, Y. Kikuchi, M. Imai, A. Itoh, Phys. Rev. A 84, 052719 (2011)ADSGoogle Scholar
  70. 70.
    J. Simons, Adv. Quantum Chem. 52, 171 (2007)ADSGoogle Scholar
  71. 71.
    H. Bichsel, Rev. Mod. Phys. 60, 663 (1988)ADSGoogle Scholar
  72. 72.
    M. Dingfelder, M. Inokuti, H. Paretzke, Rad. Phys. Chem. 59, 255 (2000)ADSGoogle Scholar
  73. 73.
    R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, D. Emfietzoglou, J. Phys.: Conf. Ser. 373, 012015 (2012)ADSGoogle Scholar
  74. 74.
    W.H. Barkas, in Nuclear Research Emulsions I. Techniques and Theory (Academic Press, New York, London, 1963), Vol. 1Google Scholar
  75. 75.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods B 175-177, 125 (2001)ADSGoogle Scholar
  76. 76.
    P. Kundrat, Phys. Med. Biol. 52, 6813 (2007)Google Scholar
  77. 77.
    M. Hollmark, J. Uhrdin, D. Belkic, I. Gudowska, A. Brahme, Phys. Med. Biol. 49, 3247 (2004)Google Scholar
  78. 78.
    M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)ADSGoogle Scholar
  79. 79.
    H. Schmidt-Böcking et al., Radiat. Phys. Chem. 71, 627 (2004)ADSGoogle Scholar
  80. 80.
    C. Tung, T. Chao, H. Hsieh, W. Chan, Nucl. Instrum. Methods B 262, 231 (2007)ADSGoogle Scholar
  81. 81.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)ADSMATHMathSciNetGoogle Scholar
  82. 82.
    J.J. Butts, R. Katz, Radiat. Res. 30, 855 (1967)Google Scholar
  83. 83.
    R. Katz, B. Ackerson, M. Homayoonfar, S.C. Sharma, Radiat. Res. 47, 402 (1971)Google Scholar
  84. 84.
    M. Korcyl, M. Waligórski, Int. J. Radiat. Biol. 85, 1101 (2009)Google Scholar
  85. 85.
    M. Waligorski, R. Hamm, R. Katz, Nucl. Tracks Radiat. Meas. 11, 309 (1986)Google Scholar
  86. 86.
    F.A. Cucinotta, R. Katz, J.W. Wilson, Radiat. Environ. Biophys. 37, 259 (1998)Google Scholar
  87. 87.
    J. Ward, Radiat. Res. 142, 362 (1995)Google Scholar
  88. 88.
    A. Schipler, G. Iliakis, Nucl. Acid. Res. 41, 7589 (2013)Google Scholar
  89. 89.
    I.I. Fabrikant, S. Caprasecca, G.A. Gallup, J.D. Gorfinkiel, J. Chem. Phys. 136, 184301 (2012)ADSGoogle Scholar
  90. 90.
    D. Becker, M. Sevilla, The Chemical Consequences of Radiation Damage to DNA, in Advances in Radiation Biology, edited by J. Lett. (Academic Press, 1993), Vol. 17, pp. 121–180Google Scholar
  91. 91.
    F.A. Gianturco, F. Sebastianelli, R.R. Lucchese, I. Baccarelli, N. Sanna, J. Chem. Phys. 128, 174302 (2008)ADSGoogle Scholar
  92. 92.
    L. Sanche, Nanoscale Dynamics of Radiosensitivity: Role of low energy electrons, in Radiation Damage in Biomolecular Systems, edited by G. Garcia, M.C. Fuss (Springer, 2012)Google Scholar
  93. 93.
    R. Panajotovic, F. Martin, P. Cloutier, D. Hunting, L. Sanche, Radiat. Res. 165, 452 (2006)Google Scholar
  94. 94.
    L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997)ADSGoogle Scholar
  95. 95.
    M. Mucke, M. Braune, S. Barth, M. Förstel, T. Lischke, V. Ulrich, T. Arion, U. Becker, A. Bradshaw, U. Hergenhahn, Nat. Phys. 6, 143 (2010)Google Scholar
  96. 96.
    S.S. Bulanov et al., Med. Phys. 35, 1770 (2008)Google Scholar
  97. 97.
    J. Adamcik, J.H. Jeon, K.J. Karczewski, R. Metzler, G. Dietler, Soft Matter 8, 8651 (2012)ADSGoogle Scholar
  98. 98.
    H.M. Dang, M.J.V. Goethem, E.R.V.D. Graaf, S. Brandenburg, R. Hoekstra, T. Schlathölter, Eur. Phys. J. D 63, 359 (2011)ADSGoogle Scholar
  99. 99.
    M. Sevilla, D. Becker, Y. Razskazovskii, Nucleonika 42, 283 (1997)Google Scholar
  100. 100.
    M. Niklas, A. Abdollahi, M. Akselrod, J. Debus, O. Jäkel, S. Greilich, Int. J. Radiat. Oncol. 87, 1141 (2013)Google Scholar
  101. 101.
    R. de Jiang, H. Shen, Y.J. Piao, Roman. J. Morphol. Embryol. 51, 663 (2010)Google Scholar
  102. 102.
    M. Toulemonde, C. Dufour, A. Meftah, E. Paumier, Nucl. Instrum. Methods B 166-167, 903 (2000)ADSGoogle Scholar
  103. 103.
    M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Methods B 216, 1 (2004)ADSGoogle Scholar
  104. 104.
    M. Skupinski, M. Toulemonde, M. Lindeberg, K. Hjort, Nucl. Instrum. Methods B 240, 681 (2005)ADSGoogle Scholar
  105. 105.
    F. Pawlak, C. Dufour, A. Laurent, E. Paumier, J. Perrière, J.P. Stoquert, M. Toulemonde, Nucl. Instrum. Methods B 151, 140 (1999)ADSGoogle Scholar
  106. 106.
    M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Mat. Fys. Medd. 52, 263 (2006)Google Scholar
  107. 107.
    H. Dammak, D. Lesueur, A. Dunlop, P. Legrand, J. Morillo, Radiat. Eff. Defect. Sol. 126, 111 (1993)ADSGoogle Scholar
  108. 108.
    H.D. Mieskes, W. Assmann, F. Grüner, H. Kucal, Z.G. Wang, M. Toulemonde, Phys. Rev. B 67, 155414 (2003)ADSGoogle Scholar
  109. 109.
    A. Meftah, M. Djebara, N. Khalfaoui, M. Toulemonde, Nucl. Instrum. Methods B 146, 431 (1998)ADSGoogle Scholar
  110. 110.
    V. Katin, Y. Martinenko, Y. Yavlinskii, Sov. Techn. Phys. Lett. 13, 276 (1987)Google Scholar
  111. 111.
    M. Toulemonde, W. Assmann, C. Trautmann, F. Grüner, Phys. Rev. Lett. 88, 057602 (2002)ADSGoogle Scholar
  112. 112.
    A. Meftah, F. Brisard, J. Costantini, M. Hage-Ali, J. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 48, 920 (1993)ADSGoogle Scholar
  113. 113.
    A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, AIP Conf. Proc. 1344, 230 (2011)Google Scholar
  114. 114.
    A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, Nucl. Instrum. Methods B 279, 135 (2012)ADSGoogle Scholar
  115. 115.
    L. Landau, E. Lifshitz, in Fluid Dynamics, 2nd edn. (Reed-Elsevier, Oxford, 1987), Vol. 6Google Scholar
  116. 116.
    Y. Zeldovich, Y. Raiser, in Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications, Oxford, New York, 1966), Vol. 1Google Scholar
  117. 117.
    G. Chernyj, Gas Dynamics (Nauka, Moscow, 1994)Google Scholar
  118. 118.
    I.A. Solov’yov, A.V. Yakubovich, E. Surdutovich, A.V. Solov’yov, Unpublished (2013)Google Scholar
  119. 119.
    K. Range, M.J. McGrath, X. Lopez, D.M. York, J. Am. Chem. Soc. 126, 1654 (2004)Google Scholar
  120. 120.
    J. LaVerne, Radiat. Phys. Chem. 34, 135 (1989)ADSGoogle Scholar
  121. 121.
    B. Jakob, M. Scholz, G. Taucher-Scholz, Radiat. Res. 159, 676 (2003)Google Scholar
  122. 122.
    F. Tobias, M. Durante, G. Taucher-Scholz, B. Jakob, Mutat. Res. 704, 54 (2010)Google Scholar
  123. 123.
    W.P. Roos, B. Kaina, Trends Mol. Med. 12, 440 (2006)Google Scholar
  124. 124.
    J. Ward, Prog. Nucleic Acid. Res. Mol. Biol. 35, 95 (1988)Google Scholar
  125. 125.
    D.T. Goodhead, Int. J. Radiat. Biol. 65, 7 (1994)Google Scholar
  126. 126.
    S. Malyarchuk, R. Castore, L. Harrison, DNA Repair 8, 1343 (2009)Google Scholar
  127. 127.
    S. Malyarchuk, R. Castore, L. Harrison, Nucleic Acids Res. 36, 4872 (2008)Google Scholar
  128. 128.
    E. Sage, L. Harrison, Mutat. Res. 711, 123 (2011)Google Scholar
  129. 129.
    A.C. Heuskin, C. Michiels, S. Lucas, Phys. Med. Biol. 58, 6495 (2013)Google Scholar
  130. 130.
    M. Scholz, A. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997)Google Scholar
  131. 131.
    W.K. Weyrather, S. Ritter, M. Scholz, G. Kraft, Int. J. Rad. Biol. 75, 1357 (1999)Google Scholar
  132. 132.
    R. Hawkins, Int. J. Radiat. Biol. 69, 739 (1996)Google Scholar
  133. 133.
    R. Hawkins, Radiat. Res. 172, 761 (2009)Google Scholar
  134. 134.
    D. Goodhead, J. Thacker, R. Cox, Int. J. Radiat. Biol. 63, 543 (1993)Google Scholar
  135. 135.
    D. Goodhead, Radiat. Prot. Dosim. 122, 3 (2006)Google Scholar
  136. 136.
    F. Cucinotta, H. Nikjoo, D. Goodhead, Radiat. Environ. Biophys. 38, 81 (1999)Google Scholar
  137. 137.
    M. Scholz, G. Kraft, Adv. Space Res. 18, 5 (1996)ADSGoogle Scholar
  138. 138.
    T. Friedrich, U. Scholz, T. Elsässer, M. Durante, M. Scholz, Int. J. Radiat. Biol. 88, 103 (2012)Google Scholar
  139. 139.
    W. Friedland, P. Kundrát, Mutat. Res. Gen. Tox. En. 756, 213 (2013)Google Scholar
  140. 140.
    Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Radiat. Res. 169, 19 (2008)Google Scholar
  141. 141.
    M. Depken, H. Schiessel, Biophys. J. 96, 777 (2009)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsOakland UniversityRochesterUSA
  2. 2.MBN Research CenterFrankfurt am MainGermany
  3. 3.A.F. Ioffe Physical Technical InstituteSt. PetersburgRussian Federation

Personalised recommendations