Advertisement

Time-dependent characteristics of the dielectric barrier discharge in Xe-Cl2 mixture and kinetics of the XeCl molecules

  • Svetlana Avtaeva
Regular Article

Abstract

Time-dependent characteristics of the dielectric barrier discharge in Xe-Cl2 mixture at chlorine concentration of 0.5% and kinetic processes governing the generation of XeCl molecules are studied using the 1D fluid model. It is shown that at low voltage amplitude (5 kV) a one-peak mode of the discharge is observed and at high voltage amplitude (7 kV) a two-peak mode of the discharge appears. The radiation power of the XeCl band increases with amplitude of the supply voltage. It is demonstrated that the harpoon reaction Xe + Cl2 → XeCl + Cl provides the greatest contribution into generation of XeCl exciplex molecules during short current pulses and the ion-ion recombination Xe+ 2 + Cl- → XeCl* + Xe provides the greatest contribution during afterglow. Quenching of XeCl molecules is a result of the radiative decay XeCl → Xe + Cl + hv (308 nm). During current spike the great contribution into quenching of XeCl provides also the dissociative ionization e + XeCl → Xe+ + Cl + 2e.

Keywords

Plasma Physics 

References

  1. 1.
    A.M. Boichenko, V.F. Tarasenko, S.I. Yakovlenko, Laser Phys. 10, 1159 (2000) Google Scholar
  2. 2.
    J. Tellinghuisen, in Applied Atomic Collision Physics, Gas Lasers, edited by E.W. McDaniel, W.L. Nighan (Academic Press, New York, 1982), Vol. 3 Google Scholar
  3. 3.
    M. Rokni, J.H. Jacob, in Applied Atomic Collision Physics, Gas Lasers, edited by E.W. McDaniel, W.L. Nighan (Academic Press, New York, 1982), Vol. 3 Google Scholar
  4. 4.
    A.M. Boichenko et al., UV and VUV Excilamps: Physics, Technology, and Application (STT, Tomsk, 2011) Google Scholar
  5. 5.
    A. Belasri, N. Larbi Daho Bachir, Z. Zarrache, Plasma Chem. Plasma Proc. 33, 131 (2013) CrossRefGoogle Scholar
  6. 6.
    R. Bussiahn, E. Kindel, A. Pipa, Contrib. Plasma Phys. 50, 182 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    V. Pipa, R. Bussiahn, Contrib. Plasma Phys. 51, 850 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    J. Xu, Y. Guo, L. Xia, J. Zhang, Plasma Sources Sci. Technol. 16, 448 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    M.V. Erofeev, V.F. Tarasenko, J. Phys. D 39, 3609 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    U. Kogelschatz, Opt. J. 79, 55 (2012) Google Scholar
  11. 11.
    U. Kogelschatz, IEEE Trans. Plasma Sci. 30, 1400 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    U. Kogelschatz, J. Phys.: Conf. Ser. 257, 012015 (2010) ADSGoogle Scholar
  13. 13.
    L. Dong, Z. Yin, X. Li, L. Wang, Plasma Sources Sci. Technol. 12, 380 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    R.A. Siliprandi, H.E. Roman, R. Barni, C. Riccardi, J. Appl. Phys. 104, 063309 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Boichenko, V.S. Skakun, E.A. Sosnin, V.F. Tarasenko, S.I. Yakovlenko, Laser Phys. 10, 540 (2000) Google Scholar
  16. 16.
    M.I. Lomaev, V.S. Skakun, E.A. Sosnin, V.F. Tarasenko, D.V. Shitts, M.V. Erofeev, Phys. Usp. 46, 193 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    S.V. Avtaeva, E.A. Sosnin, B. Saghi, V.A. Panarin, B. Rahmani, Plasma Phys. Rep. 39, 768 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    M.I. Lomaev, V.F. Tarasenko, A.N. Tkachev, D.V. Shitts, S.I. Yakovlenko, Tech. Phys. 49, 790 (2004) CrossRefGoogle Scholar
  19. 19.
    S.V. Avtaeva, B. Saghi, B. Rahmani, IEEE Trans. Plasma Sci. 39, 1814 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    S. Avtaeva, in Horizons in World Physics, edited by Kenneth R. Carter, George E. Murphy (Nova Publishers, New York, 2012), Vol. 279 Google Scholar
  21. 21.
    S.V. Avtaeva, IEEE Trans. Plasma Sci. 42, 229 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Kyrgyz-Russian Slavic UniversityBishkekKyrgyzstan

Personalised recommendations