Advertisement

The physical mechanism of molecular alignment and orientation by a femtosecond two-color laser pulse

  • Chaochao Qin
  • Yuzhu Liu
  • Xianzhou Zhang
  • Yufang Liu
Regular Article

Abstract

The field-free molecular alignment and orientation by the femtosecond two-color laser pulse were studied theoretically. The time-dependent angular distributions of the molecular axis were presented and the physical mechanism of the field-free molecular alignment and orientation induced by a femtosecond two-color laser pulse was investigated. It was shown that the femtosecond two-color laser pulse can orient molecules due to the fact that it can change the parity of the molecular rotation wave function. It was also demonstrated that the dependence of field-free molecular orientation on the phase can provide a new way for evaluating the phase of a femtosecond two-color laser pulse. In addition, the effect of temperature on molecular alignment and orientation was discussed.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    T. Seideman, Phys. Rev. Lett. 83, 4971 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    F. Rosca-Pruna, M.J.J. Vrakking, Phys. Rev. Lett. 87, 153902 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    C.C. Qin, Y.Z. Liu, S. Zhang, Y.M. Wang, Y. Tang, B. Zhang, Phys. Rev. A 83, 033423 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Y.N. Gao, C.Y. Wu, N. Xu, G.P. Zeng, H.B. Jiang, H. Yang, Q.H. Gong, Phys. Rev. A 77, 043404 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. Lett. 90, 213001 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Larsen, I. Wendt-Larsen, H. Stapelfeldt, Phys. Rev. Lett. 83, 1123 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    C.Z. Bisgaard, O.J. Clarkin, G.R. Wu, A.M.D. Lee, O. Gessner, C.C. Hayden, A. Stolow, Science 323, 1464 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pepin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Nature 432, 867 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    H. Li, J. Liu, Y.H. Feng, C. Chen, H.F. Pan, J. Wu, H.P. Zeng, Appl. Phys. Lett. 99, 011108 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    L. Holmegaard, J.L. Hansen, L. Kalhoj, S.L. Kragh, H. Stapelfeldt, F. Filsinger, J. Kupper, G. Meijer, D. Dimitrovski, M. Abu-samha, C.P.J. Martiny, L.B. Madsen, Nat. Phys. 6, 428 (2010)CrossRefGoogle Scholar
  12. 12.
    D.H. Parker, R.B. Bernstein, Annu. Rev. Phys. Chem. 40, 561 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    B. Friedrich, D.R. Herschbach, Nature 353, 412 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    M.J.J. Vrakking, S. Stolte, Chem. Phys. Lett. 271, 209 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    T. Kanai, H. Sakai, J. Chem. Phys. 115, 5492 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    R. Tehini, D. Sugny, Phys. Rev. A 77, 023407 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M. Muramatsu, M. Hita, S. Minemoto, H. Sakai, Phys. Rev. A 79, 011403(R) (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Zhang, C.H. Lu, T.Q. Jia, Z.G. Wang, Z.R. Sun, Phys. Rev. A 83, 043410 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H. Yun, H.T. Kim, C.M. Kim, C.H. Nam, J. Lee, Phys. Rev. A 84, 065401 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    R. Tehini, M.Z. Hoque, O. Faucher, D. Sugny, Phys. Rev. A 85, 043423 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Spanner, S. Patchkovskii, E. Frumker, P. Corkum, Phys. Rev. Lett. 109, 113001 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    C. Qin, Y. Tang, Y. Wang, B. Zhang, Phys. Rev. A 85, 053415 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    C.C. Shu, K.J. Yuan, W.H. Hu, S.L. Cong, J. Chem. Phys. 132, 244311 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M. Machholm, N.E. Henriksen, Phys. Rev. Lett. 87, 193001 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    M. Lapert, D. Sugny, Phys. Rev. A 85, 063418 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C.C. Shu, N.E. Henriksen, Phys. Rev. A 87, 013408 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    D. Daems, S. Guerin, D. Sugny, H.R. Jauslin, Phys. Rev. Lett. 94, 153003 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    E. Gershnabel, I.S. Averbukh, R.J. Gordon, Phys. Rev. A 74, 053414 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    C.C. Shu, K.J. Yuan, W.H. Hu, J. Yang, S.L. Cong, Phys. Rev. A 78, 055401 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    B. Friedrich, D. Herschbach, J. Chem. Phys. 111, 6157 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    S. De, I. Znakovskaya, D. Ray, F. Anis, N.G. Johnson, I.A. Bocharova, M. Magrakvelidze, B.D. Esry, C.L. Cocke, I.V. Litvinyuk, M.F. Kling, Phys. Rev. Lett. 103, 153002 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    E. Frumker, C.T. Hebeisen, N. Kajumba, J.B. Bertrand, H.J. Wörner, M. Spanner, D.M. Villeneuve, A. Naumov, P.B. Corkum, Phys. Rev. Lett. 109, 113901 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    P.M. Kraus, A. Rupenyan, H.J. Wörner, Phys. Rev. Lett. 109, 233903 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. Fleischer, Y. Zhou, R.W. Field, K.A. Nelson, Phys. Rev. Lett. 107, 163603 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    O. Ghafur, A. Rouzee, A. Gijsbertsen, W.K. Siu, S. Stolte, M.J.J. Vrakking, Nat. Phys. 5, 289 (2009)CrossRefGoogle Scholar
  36. 36.
    H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, Phys. Rev. Lett. 90, 083001 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    L. Holmegaard, J.H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, G. Meijer, Phys. Rev. Lett. 102, 023001 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    F. Filsinger, J. Küpper, G. Meijer, L. Holmegaard, J.H. Nielsen, I. Nevo, J.L. Hansen, H. Stapelfeldt, J. Chem. Phys. 131, 064309 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)ADSCrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Q.T. Meng, G.H. Yang, H.L. Sun, K.L. Han, N.Q. Lou, Phys. Rev. A 67, 043423 (2003)CrossRefGoogle Scholar
  41. 41.
    T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)CrossRefGoogle Scholar
  42. 42.
    K.A. Peterson, T.H. Dunning, J. Mol. Struct. (Theochem) 400, 93 (1997)CrossRefGoogle Scholar
  43. 43.
    M. Pecul, Chem. Phys. Lett. 404, 217 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    C.C. Qin, X.D. Zhao, X.Z. Zhang, Y.F. Liu, Chin. Phys. Lett. 30, 023302 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    J.H. Nielsen, P. Simesen, C.Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, J. Küpper, Phys. Chem. Chem. Phys. 13, 18971 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chaochao Qin
    • 1
  • Yuzhu Liu
    • 2
  • Xianzhou Zhang
    • 1
  • Yufang Liu
    • 1
  1. 1.Department of PhysicsHenan Normal UniversityXinxiangP.R. China
  2. 2.College of Physics and Opto-electronics EngineeringNanjing University of Information Science & TechnologyNanjingP.R. China

Personalised recommendations