Advertisement

A different way to verify the violation of the WWŻB inequality

  • Luís P. Martins
  • Álvaro J. Almeida
  • Nuno A. Silva
  • Paulo S. André
  • Armando N. Pinto
Regular Article

Abstract

The solution to Bell theorem for N-qubits was widely studied in [M. Żukowski, Č. Brukner, Phys. Rev. Lett. 88, 210401 (2002)]. Here we present a different way to obtain the solution of that theorem for the dichotomic experiment. In order to obtain a solution for the Werner-Wolf-Żukowski-Brukner WWŻB inequality a new correlation function is proposed. This new correlation function expresses directly the constraints imposed by local theories. We use the general Greenberger-Horne-Zeilinger (GHZ) state, whereof, as it is well known, emerges a family of entangled states that do not violate the WWŻB inequality [M. Żukowski, Č. Brukner, W. Laskowski, M. Wieśniak, Phys. Rev. Lett. 88, 210402 (2002)], i.e. it can be described by a local realistic theory, to illustrate our results.

Keywords

Quantum Information 

References

  1. 1.
    M. Żukowski, Č. Brukner, Phys. Rev. Lett. 88, 210401 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    M. Żukowski, Č. Brukner, W. Laskowski, M. Wieśniak, Phys. Rev. Lett. 88, 210402 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    J.S. Bell, Rev. Mod. Phys. 38, 447 (1966)CrossRefMATHADSGoogle Scholar
  4. 4.
    J.S. Bell, Physics 1, 165 (1964)Google Scholar
  5. 5.
    S.J. Freedman, J.F. Clauser, Phys. Rev. Lett. 28, 938 (1972)CrossRefADSGoogle Scholar
  6. 6.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)CrossRefADSGoogle Scholar
  7. 7.
    G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998)CrossRefMATHMathSciNetADSGoogle Scholar
  8. 8.
    P. Walther, M. Aspelmeyer, K.J. Resch, A. Zeilinger, Phys. Rev. Lett. 95, 020403 (2005)CrossRefADSGoogle Scholar
  9. 9.
    D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Phys. Rev. Lett. 88, 040404 (2002)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    V. Scarani, A. Acín, E. Schenck, M. Aspelmeyer, Phys. Rev. A 71, 042325 (2005)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012)CrossRefADSGoogle Scholar
  12. 12.
    P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Nature 434, 169 (2005)CrossRefADSGoogle Scholar
  13. 13.
    C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2003)CrossRefADSGoogle Scholar
  14. 14.
    D. Bouwmeester, J.W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)CrossRefADSGoogle Scholar
  15. 15.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)CrossRefMATHMathSciNetADSGoogle Scholar
  16. 16.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)CrossRefMATHMathSciNetADSGoogle Scholar
  17. 17.
    V. Scarani, N. Gisin, Phys. Rev. Lett. 87, 117901 (2001)CrossRefADSGoogle Scholar
  18. 18.
    R.F. Werner, M.M. Wolf, Phys. Rev. A 64, 032112 (2001)CrossRefADSGoogle Scholar
  19. 19.
    H. Weinfurter, M. Żukowski, Phys. Rev. A 64, 010102 (2001)CrossRefADSGoogle Scholar
  20. 20.
    N.D. Mermin, Phys. Rev. Lett. 65, 1838 (1990)CrossRefMATHMathSciNetADSGoogle Scholar
  21. 21.
    B.S. Cirel’son, Lett. Math. Phys. 4, 93 (1980)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    S.L. Braunstein, A. Mann, M. Revzen, Phys. Rev. Lett. 68, 3259 (1992)CrossRefMATHMathSciNetADSGoogle Scholar
  23. 23.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  24. 24.
    G. Svetlichny, Phys. Rev. D 35, 3066 (1987)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    J. Lavoie, R. Kaltenbaek, K.J. Resch, New J. Phys. 11, 073051 (2009)CrossRefADSGoogle Scholar
  26. 26.
    J.L. Cereceda, Phys. Rev. A 66, 024102 (2002)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    R. Horodecki, P. Horodecki, M. Horodecki, Phys. Lett. A 200, 340 (1995)CrossRefMATHMathSciNetADSGoogle Scholar
  28. 28.
    D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger, Am. J. Phys. 58, 1131 (1990)CrossRefMathSciNetADSMATHGoogle Scholar
  29. 29.
    V. Scarani, N. Gisin, J. Phys. A 34, 6043 (2001)CrossRefMATHMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luís P. Martins
    • 1
  • Álvaro J. Almeida
    • 2
    • 3
  • Nuno A. Silva
    • 2
    • 4
  • Paulo S. André
    • 2
    • 3
  • Armando N. Pinto
    • 2
    • 4
  1. 1.Department of Physics and AstronomyUniversity of SheffieldSheffieldUK
  2. 2.Department of PhysicsUniversity of AveiroAveiroPortugal
  3. 3.Instituto de TelecomunicaçõesUniversity of AveiroAveiroPortugal
  4. 4.Department of Electronics, Telecommunications and InformaticsUniversity of AveiroAveiroPortugal

Personalised recommendations