On the origin of atomistic mechanism of rapid diffusion in alkali halide nanoclusters

  • Tomoaki Niiyama
  • Shin-ichi Sawada Sawada
  • Kensuke S. Ikeda
  • Yasushi Shimizu
Regular Article

Abstract

To elucidate the atomistic diffusion mechanism responsible for the rapid diffusion in alkali halide nano particles, called Spontaneous Mixing, we execute molecular dynamics simulations with empirical models for KCl-KBr, NaCl-NaBr, RbCl-RbBr and KBr-KI. We successfully reproduce essential features of the rapid diffusion phenomenon. It is numerically confirmed that the rate of the diffusion clearly depends on the size and temperature of the clusters, which is consistent with experiments. A quite conspicuous feature is that the surface melting and collective motions of ions are inhibited in alkali halide clusters. This result indicates that the Surface Peeling Mechanism, which is responsible for the spontaneous alloying of binary metals, does not play a dominant role for the spontaneous mixing in alkali halide nanoclusters. Detailed analysis of atomic motion inside the clusters reveals that the Vacancy Mechanism is the most important mechanism for the rapid diffusion in alkali halide clusters. This is also confirmed by evaluation of the vacancy formation energy: the formation energy notably decreases with the cluster size, which makes vacancy formation easier and diffusion more rapid in small alkali halide clusters.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    E.L. Wolf, Nanophysics and Nanotechnology (Wiley-VCH, 2008) Google Scholar
  2. 2.
    G.A. Ozin, A.C. Arsenault, L. Cademartiri, Nanochemistry: a chemical approach to nanomaterials (Royal Society of Chemistry, 2009) Google Scholar
  3. 3.
    M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987) CrossRefGoogle Scholar
  4. 4.
    M. Haruta, Nature 437, 1098 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    H. Yasuda, H. Mori, Z. Phys. D 31, 131 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    H. Yasuda, H. Mori, M. Komatsu, K. Takeda, H. Fujita, J. Electron Microsc. 41, 267 (1992) Google Scholar
  7. 7.
    H. Yasuda, H. Mori, Phys. Rev. Lett. 69, 3747 (1992) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kimura, Y. Saito, T. Nakada, C. Kaito, Phys. Low-Dim. Struct. 1/2, 1 (2000) Google Scholar
  9. 9.
    Y. Kimura, Y. Saito, T. Nakada, C. Kaito, Physica E 13, 11 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Shimizu, S. Sawada, K.S. Ikeda, Eur. Phys. J. D 4, 365 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Shimizu, K.S. Ikeda, S.I. Sawada, Phys. Rev. B 64, 075412 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    R. Garrigos, P. Cheyssac, R. Kofman, Z. Phys. D 12, 497 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    K.F. Peters, J.B. Cohen, Y.W. Chung, Phys. Rev. B 57, 13430 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    T.R. Kobayashi, K.S. Ikeda, Y. Shimizu, S. Sawada, Phys. Rev. B 66, 245412 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    T.R. Kobayashi, K.S. Ikeda, Y. Shimizu, S. Sawada, J. Chem. Phys. 118, 6552 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    S.I. Sawada, Y. Shimizu, K.S. Ikeda, Phys. Rev. B 67, 024204 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    F. Baletto, C. Mottet, R. Ferrando, Phys. Rev. Lett. 90, 135504 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    M. Born, J.E. Mayer, Z. Phys. A 75, 1 (1932) CrossRefGoogle Scholar
  19. 19.
    F.G. Fumi, M.P. Tosi, J. Phys. Chem. Solids 25, 31 (1964) ADSCrossRefGoogle Scholar
  20. 20.
    M.P. Tosi, F.G. Fumi, J. Phys. Chem. Solids 25, 45 (1964) ADSCrossRefGoogle Scholar
  21. 21.
    A. Aguado, J. Phys. Chem. B 105, 2761 (2001) CrossRefGoogle Scholar
  22. 22.
    J. Jellinek, T.L. Beck, R.S. Berry, J. Chem. Phys. 84, 2783 (1986) ADSCrossRefGoogle Scholar
  23. 23.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989) Google Scholar
  24. 24.
    T. Niiyama, Y. Shimizu, T.R. Kobayashi, T. Okushima, K.S. Ikeda, Phys. Rev. E 79, 051101 (2009) ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    S. Sugano, Y. Nishina, S. Ohnishi, Microclusters (Springer, 1987) Google Scholar
  26. 26.
    P.G. Shewmon, Diffusion in Solids (McGraw-Hill, Inc., New York, 1963) Google Scholar
  27. 27.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2005) Google Scholar
  28. 28.
    R. Kofman, P. Cheyssac, R. Garrigos, Y. Lereah, G. Deutscher, Physica A 157, 630 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, Phys. Rev. Lett. 94, 176105 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    S. Pehkonen, M. Ahtee, O. Inkinen, J. Phys. D 5, 767 (1972) ADSCrossRefGoogle Scholar
  31. 31.
    S. Pehkonen, J. Phys. D 6, 538 (1973) ADSCrossRefGoogle Scholar
  32. 32.
    N. Laurance, Phys. Rev. 120, 57 (1960) ADSCrossRefGoogle Scholar
  33. 33.
    H. Mizuno, M. Inoue, Phys. Rev. 120, 1226 (1960) ADSCrossRefGoogle Scholar
  34. 34.
    M. Sinder, D. Fuks, J. Pelleg, Phys. Rev. B 50, 2775 (1994) ADSCrossRefGoogle Scholar
  35. 35.
    W.H. Qi, M.P. Wang, Physica B 334, 432 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    M. Müller, K. Albe, Acta Mater. 55, 3237 (2007) CrossRefGoogle Scholar
  37. 37.
    T. Niiyama, S.I. Sawada, K.S. Ikeda, Y. Shimizu, Chem. Phys. Lett. 503, 252 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tomoaki Niiyama
    • 1
  • Shin-ichi Sawada Sawada
    • 2
  • Kensuke S. Ikeda
    • 3
  • Yasushi Shimizu
    • 3
  1. 1.College of Science and Engineering, Kanazawa UniversityKanazawaJapan
  2. 2.Department of PhysicsKwansei Gakuin UniversitySandaJapan
  3. 3.Department of PhysicsRitsumeikan UniversityKusatsuJapan

Personalised recommendations