Skip to main content

Advertisement

Log in

Investigation of aniline by high pressure Raman scattering spectroscopy and quantum chemical calculation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The unexpected redshifts of the NH and the blueshifts of the CH stretching frequencies with increasing pressure were observed in the pressure dependent Raman spectra of aniline at 0−7.7 GPa. Based on the natural bond orbital (NBO) analysis, the opposite frequency shifts of the CH and NH vibrations are attributed to the different pressure-induced change in the electronic antibonding occupancies of NH and CH. Further, the antibonding occupancy of \hbox{$\pi_{\mathrm{C{\mbox{-}}C}}^{\ast}$} π C - C ∗ and the charge of phenyl ring in aniline were evaluated, characterizing an increase of antibonding occupancy of \hbox{$\pi ^{\ast}_{\mathrm{C\mbox{-}C}}$} π C - C ∗ and a decrease of phenyl ring’s charge with increasing pressure. These results reflect that the NH-π and CH-π bonds, as the research target of intermolecular interaction, are becoming weaker as the pressure increases. The research would improve the understanding of the pressure effect on the intermolecular interactions of aniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Bartell, Ann. Rev. Phys. Chem. 49, 43 (1998)

    Article  ADS  Google Scholar 

  2. R.N. Pribble, T.S. Zwier, Science 265, 75 (1994)

    Article  ADS  Google Scholar 

  3. G.R. Desiraju, Nature 412, 397 (2001)

    Article  ADS  Google Scholar 

  4. B. Brutschy, Chem. Rev. 92, 1567 (1992)

    Article  Google Scholar 

  5. B. Brutschy, Chem. Rev. 100, 3891 (2000)

    Article  Google Scholar 

  6. J.T. Kellis, K. Nyberg, D. Sail, A.R. Fersht, C. Tanford, Nature 333, 784 (1988)

    Article  ADS  Google Scholar 

  7. C. Tanford, J. Am. Chem. Soc. 84, 4240 (1962)

    Article  Google Scholar 

  8. M. Nishio, M. Hirota, Tetrahedron 45, 7201 (1989)

    Article  Google Scholar 

  9. Y. Umezawaa, M. Nishio, Bioorg. Med. Chem. 6, 493 (1998)

    Article  Google Scholar 

  10. M. Brandl, M.S. Weiss, A. Jabs, J. Sühnel, R. Hilgenfeld, J. Mol. Biol. 307, 357 (2001)

    Article  Google Scholar 

  11. P. Chakrabarti, U. Samanta, J. Mol. Biol. 251, 9 (1995)

    Article  Google Scholar 

  12. M.M. Gromiha, Polymer 46, 983 (2005)

    Article  Google Scholar 

  13. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 122, 11450 (2000)

    Article  Google Scholar 

  14. R.S. Prajapati, M. Sirajuddin, V. Durani, S. Sreeramulu, R. Varadarajan, Biochemistry 45, 15000 (2006)

    Article  Google Scholar 

  15. T. Nakanaga, J. Miyawaki, K. Sugawara, H. Takeo, Chem. Phys. Lett. 261, 414 (1996)

    Article  ADS  Google Scholar 

  16. O. Bludsky, J.S. Poner, J. Leszczynski, V.S. Pirko, P. Hobza, J. Chem. Phys. 105, 11042 (1996)

    Article  ADS  Google Scholar 

  17. A.M. Palafox, F.J. Melendez, J. Mol. Struct. (Theochem) 493, 171 (1999)

    Article  Google Scholar 

  18. T. Nakanaga, F. Ito, J. Phys. Chem. A 103, 5440 (1999)

    Article  Google Scholar 

  19. D.A. Rodham, S. Suzuki, R.D. Suenram, F.J. Lovas, S. Dasgupta, W.A. Goddard, Nature 362, 735 (1993)

    Article  ADS  Google Scholar 

  20. Y. Matsumoto, J. Iwamoto, K. Honma, Phys. Chem. Chem. Phys. 14, 12938 (2012)

    Article  Google Scholar 

  21. A.V. Fedorov, J.R. Cable, J.R. Carney, T.S. Zwier, J. Phys. Chem. A 105, 8162 (2001)

    Article  Google Scholar 

  22. J.A. Fernandez, A. Longarte, I. Unamuno, F. Castaoa, J. Chem. Phys. 113, 8541 (2000)

    Article  ADS  Google Scholar 

  23. A. Longarte, J.A. Fernandez, I. Unamuno, J. Chem. Phys. 113, 8549 (2000)

    Article  ADS  Google Scholar 

  24. M. Peschke, A. Blades, P. Kebarle, J. Am. Chem. Soc. 124, 11519 (2002)

    Article  Google Scholar 

  25. J.V. Wijngaarden, W. Jäger, J. Am. Chem. Soc. 125, 14631 (2003)

    Article  Google Scholar 

  26. T.A. Beu, U. Buck, J. Chem. Phys. 114, 7848 (2001)

    Article  ADS  Google Scholar 

  27. T.A. Beu, U. Buck, J. Chem. Phys. 114, 7853 (2001)

    Article  ADS  Google Scholar 

  28. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  29. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  30. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

  31. J.E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem) 169, 41 (1988)

    Article  Google Scholar 

  32. M.J. Frisch et al., Gaussian 03 (Gaussian, Inc., Pittsburgh, 2003)

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  34. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  35. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 176, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Michalska, W. Zierkiewicz, D.C. Bienko, W. Wojciechowski, Th. Zeegers-Huyskens, J. Phys. Chem. A 105, 8734 (2001)

    Article  Google Scholar 

  37. N.P. Funnell, A. Dawson, W.G. Marshall, S. Parsons, Cryst. Eng. Comm. 15, 1047 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenglin Sun or Mi Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Sun, C., Li, Z. et al. Investigation of aniline by high pressure Raman scattering spectroscopy and quantum chemical calculation. Eur. Phys. J. D 68, 70 (2014). https://doi.org/10.1140/epjd/e2014-40423-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40423-2

Keywords

Navigation