Advertisement

Investigation of aniline by high pressure Raman scattering spectroscopy and quantum chemical calculation

  • Yuanzheng Chen
  • Chenglin Sun
  • Zuowei Li
  • Mi Zhou
Regular Article

Abstract

The unexpected redshifts of the NH and the blueshifts of the CH stretching frequencies with increasing pressure were observed in the pressure dependent Raman spectra of aniline at 0−7.7 GPa. Based on the natural bond orbital (NBO) analysis, the opposite frequency shifts of the CH and NH vibrations are attributed to the different pressure-induced change in the electronic antibonding occupancies of NH and CH. Further, the antibonding occupancy of \hbox{$\pi_{\mathrm{C{\mbox{-}}C}}^{\ast}$} π C - C ∗ and the charge of phenyl ring in aniline were evaluated, characterizing an increase of antibonding occupancy of \hbox{$\pi ^{\ast}_{\mathrm{C\mbox{-}C}}$} π C - C ∗ and a decrease of phenyl ring’s charge with increasing pressure. These results reflect that the NH-π and CH-π bonds, as the research target of intermolecular interaction, are becoming weaker as the pressure increases. The research would improve the understanding of the pressure effect on the intermolecular interactions of aniline.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    L.S. Bartell, Ann. Rev. Phys. Chem. 49, 43 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    R.N. Pribble, T.S. Zwier, Science 265, 75 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Desiraju, Nature 412, 397 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    B. Brutschy, Chem. Rev. 92, 1567 (1992) CrossRefGoogle Scholar
  5. 5.
    B. Brutschy, Chem. Rev. 100, 3891 (2000) CrossRefGoogle Scholar
  6. 6.
    J.T. Kellis, K. Nyberg, D. Sail, A.R. Fersht, C. Tanford, Nature 333, 784 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    C. Tanford, J. Am. Chem. Soc. 84, 4240 (1962) CrossRefGoogle Scholar
  8. 8.
    M. Nishio, M. Hirota, Tetrahedron 45, 7201 (1989) CrossRefGoogle Scholar
  9. 9.
    Y. Umezawaa, M. Nishio, Bioorg. Med. Chem. 6, 493 (1998) CrossRefGoogle Scholar
  10. 10.
    M. Brandl, M.S. Weiss, A. Jabs, J. Sühnel, R. Hilgenfeld, J. Mol. Biol. 307, 357 (2001) CrossRefGoogle Scholar
  11. 11.
    P. Chakrabarti, U. Samanta, J. Mol. Biol. 251, 9 (1995) CrossRefGoogle Scholar
  12. 12.
    M.M. Gromiha, Polymer 46, 983 (2005) CrossRefGoogle Scholar
  13. 13.
    S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 122, 11450 (2000) CrossRefGoogle Scholar
  14. 14.
    R.S. Prajapati, M. Sirajuddin, V. Durani, S. Sreeramulu, R. Varadarajan, Biochemistry 45, 15000 (2006) CrossRefGoogle Scholar
  15. 15.
    T. Nakanaga, J. Miyawaki, K. Sugawara, H. Takeo, Chem. Phys. Lett. 261, 414 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    O. Bludsky, J.S. Poner, J. Leszczynski, V.S. Pirko, P. Hobza, J. Chem. Phys. 105, 11042 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Palafox, F.J. Melendez, J. Mol. Struct. (Theochem) 493, 171 (1999) CrossRefGoogle Scholar
  18. 18.
    T. Nakanaga, F. Ito, J. Phys. Chem. A 103, 5440 (1999) CrossRefGoogle Scholar
  19. 19.
    D.A. Rodham, S. Suzuki, R.D. Suenram, F.J. Lovas, S. Dasgupta, W.A. Goddard, Nature 362, 735 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Matsumoto, J. Iwamoto, K. Honma, Phys. Chem. Chem. Phys. 14, 12938 (2012) CrossRefGoogle Scholar
  21. 21.
    A.V. Fedorov, J.R. Cable, J.R. Carney, T.S. Zwier, J. Phys. Chem. A 105, 8162 (2001) CrossRefGoogle Scholar
  22. 22.
    J.A. Fernandez, A. Longarte, I. Unamuno, F. Castaoa, J. Chem. Phys. 113, 8541 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    A. Longarte, J.A. Fernandez, I. Unamuno, J. Chem. Phys. 113, 8549 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    M. Peschke, A. Blades, P. Kebarle, J. Am. Chem. Soc. 124, 11519 (2002) CrossRefGoogle Scholar
  25. 25.
    J.V. Wijngaarden, W. Jäger, J. Am. Chem. Soc. 125, 14631 (2003) CrossRefGoogle Scholar
  26. 26.
    T.A. Beu, U. Buck, J. Chem. Phys. 114, 7848 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    T.A. Beu, U. Buck, J. Chem. Phys. 114, 7853 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) ADSCrossRefGoogle Scholar
  30. 30.
    A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988) CrossRefGoogle Scholar
  31. 31.
    J.E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem) 169, 41 (1988) CrossRefGoogle Scholar
  32. 32.
    M.J. Frisch et al., Gaussian 03 (Gaussian, Inc., Pittsburgh, 2003) Google Scholar
  33. 33.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  34. 34.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 176, 5188 (1976) ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    D. Michalska, W. Zierkiewicz, D.C. Bienko, W. Wojciechowski, Th. Zeegers-Huyskens, J. Phys. Chem. A 105, 8734 (2001) CrossRefGoogle Scholar
  37. 37.
    N.P. Funnell, A. Dawson, W.G. Marshall, S. Parsons, Cryst. Eng. Comm. 15, 1047 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Physics, Jilin UniversityChangchunP.R. China
  2. 2.State Key Laboratory of Superhard Materials, Institute of Atomic and Molecular Physics, Jilin UniversityChangchunP.R. China

Personalised recommendations