Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1–6) clusters

Regular Article

Abstract

We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n (n = 1–6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n (n = 1–6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n (n = 1–6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n (n = 1–6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies (D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n (n = 1–6) clusters, our results are presented for the first time.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    R. Alimi, R.B. Gerber, J.G. McCaffrey, H. Kunz, N. Schwentner, Phys. Rev. Lett. 69, 856 (1992) ADSCrossRefGoogle Scholar
  2. 2.
    R. Alimi, V.A. Apkarian, R.B. Gerber, J. Chem. Phys. 98, 331 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    H. Kunz, J.G. McCaffrey, R. Schriever, N. Schwentner, J. Chem. Phys. 94, 1039 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    J.G. McCaffrey, H. Kunz, N. Schwentner, J. Chem. Phys. 96, 155 (1992) ADSCrossRefGoogle Scholar
  5. 5.
    I.H. Gersonde, H. Gabriel, J. Chem. Phys. 98, 2094 (1993) ADSCrossRefGoogle Scholar
  6. 6.
    F.O. Ellison, J. Am. Chem. Soc. 85, 3540 (1963) CrossRefGoogle Scholar
  7. 7.
    F.O. Ellison, N.T. Huff, J.C. Patel, J. Am. Chem. Soc. 85, 3544 (1963) CrossRefGoogle Scholar
  8. 8.
    V.S. Batista, D.F. Coker, J. Chem. Phys. 106, 7102 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    F. Marinetti, L.I. Uranga-Piña, E. Coccia, D. López-Durán, E. Bodo, F.A. Gianturco, J. Phys. Chem. A 111, 12289 (2007) CrossRefGoogle Scholar
  10. 10.
    E. Bodo, E. Yurtsever, M. Yurtsever, F.A. Gianturco, J. Chem. Phys. 124, 074320 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    E. Bodo, F.A. Gianturco, E. Yurtsever, M. Yurtsever, Mol. Phys. 103, 3223 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    J. Douady, E. Jacquet, E. Giglio, D. Zanuttini, B. Gervais, J. Chem. Phys. 129, 184303 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    J. Douady, E. Jacquet, E. Giglio, D. Zanuttini, B. Gervais, Chem. Phys. Lett. 476, 163 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    D. Zanuttini, J. Douady, E. Jacquet, E. Giglio, B. Gervais, J. Chem. Phys. 134, 044308 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    S. Saidi, C. Ghanmi, F. Hassen, H. Berriche, Adv. Theory Quantum Syst. Chem. Phys. (2013), in press Google Scholar
  16. 16.
    H. Bouzouita, C. Ghanmi, H. Berriche, J. Mol. Struct. (Theochem) 777, 75 (2006) CrossRefGoogle Scholar
  17. 17.
    H. Berriche, J. Mol. Struct. (Theochem) 663, 101 (2003) CrossRefGoogle Scholar
  18. 18.
    H. Berriche, C. Ghanmi, H. Ben Ouada, J. Mol. Spectrosc. 230, 161 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    C. Ghanmi, H. Berriche, H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    H. Berriche, C. Ghanmi, M. Farjallah, H. Bouzouita, J. Comput. Meth. Sci. Eng. 8, 297 (2008) MATHGoogle Scholar
  21. 21.
    J.C. Barthelat, Ph. Durand, Theor. Chim. Acta 38, 283 (1975) CrossRefGoogle Scholar
  22. 22.
    J.C. Barthelat, Ph. Durand, Gazz. Chim. Ital. 108, 225 (1978) Google Scholar
  23. 23.
    W. Müller, J. Flesh, W. Meyer, J. Chem. Phys. 80, 3297 (1984) ADSCrossRefGoogle Scholar
  24. 24.
    M. Foucrault, Ph. Millié, J.P. Daudey, J. Chem. Phys. 96, 1257 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    P. Soldán, E.P.F. Lee, T.G. Wright, Phys. Chem. Chem. Phys. 3, 4661 (2001) CrossRefGoogle Scholar
  26. 26.
    J. Lozeille, E. Winata, P. Soldán, E.P.F. Lee, L.A. Viehland, T.G. Wright, Phys. Chem. Chem. Phys. 4, 3601 (2002) CrossRefGoogle Scholar
  27. 27.
    K.T. Tang, J.P. Toennies, J. Chem. Phys. 80, 3726 (1984) ADSCrossRefGoogle Scholar
  28. 28.
    G. Nowak, J. Fricke, J. Phys. B. 18, 1355 (1985) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire des Interfaces et Matériaux Avancés, Département de Physique, Faculté des Sciences, Université de MonastirMonastirTunisia
  2. 2.Physics Department, College of Science, King Khalid UniversityAbhaSaudi Arabia

Personalised recommendations