Regular and chaotic dynamics of a neutral atom in a magnetic trap

Regular Article

Abstract

In the framework of the nonlinear mechanics, we study the dynamics of a neutral atom confined in a magnetic quadrupolar trap. Owing to the axial symmetry of the system, the z-component of the angular momentum p φ is an integral of motion and, in cylindrical coordinates, the dynamics of the atom is modeled by a two-degree of freedom Hamiltonian. The structure and evolution of the phase space as a function of the energy is explored extensively by means of numerical techniques of continuation of families of periodic orbits and Poincaré surfaces of section.

Keywords

Nonlinear Dynamics 

References

  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995) ADSCrossRefGoogle Scholar
  2. 2.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, in Proceedings of the International School of Physics, edited by M. Inguscio, S. Stringari, C.E. Wieman (Societa Italiana Di Fisica, 1999), pp. 67–176 Google Scholar
  5. 5.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, New York, 1999) Google Scholar
  6. 6.
    C. Monroe, E. Cornell, C. Wieman, in Proceedings of the International School of Physics, edited by E. Arimondo, W.D. Phillips, F. Strumia (North-Holland, Amsterdam, 1993), pp. 361–378 Google Scholar
  7. 7.
    S. Chu, Rev. Mod. Phys. 70, 685 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    K.B. Davis, M.O. Mewes, W. Ketterle, Appl. Phys. B 60, 155 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    W. Ketterle, N.J. van Druten, Adv. At. Mol. Opt. Phys. 37, 181 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    E. Majorana, Nuovo Cimento 9, 43 (1932) CrossRefGoogle Scholar
  13. 13.
    C.V. Sukumar, D.M. Brink, Phys. Rev. A 56, 2451 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    T. Bergeman, G. Erez, H.J. Metcalf, Phys. Rev. A 35, 1535 (1987) ADSCrossRefGoogle Scholar
  15. 15.
    A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, Phys. Rev. Lett. 54, 2596 (1985) ADSCrossRefGoogle Scholar
  16. 16.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    D.E. Pritchard, Phys. Rev. Lett. 51, 1336 (1983) ADSCrossRefGoogle Scholar
  18. 18.
    V. Gomer, O. Harms, D. Haubrich, H. Schadwinkel, F. Strauch, B. Ueberholz, S. aus der Wiesche, D. Meschede, Hyperfine Interact. 109, 281 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Martin, K. Helmerson, V.S. Bagnato, G.P. Lafyatis, D.E. Pritchard, Phys. Rev. Lett. 61, 2431 (1988) ADSCrossRefGoogle Scholar
  20. 20.
    K. Helmerson, A. Martin, D.E. Pritchard, J. Opt. Soc. Am. B 9, 483 (1992) ADSCrossRefGoogle Scholar
  21. 21.
    T. Bergeman, private communication Google Scholar
  22. 22.
    T. Bergeman, Bull. Am. Phys. Soc. 31, 939 (1986) Google Scholar
  23. 23.
    E.L. Surkov, J.T.M. Walraven, G.V. Shlyapnikov, Phys. Rev. A 49, 4778 (1994) ADSCrossRefGoogle Scholar
  24. 24.
    W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York, 1950) Google Scholar
  25. 25.
    A. Weinstein, Inventiones Math. 20, 47 (1973) ADSCrossRefMATHGoogle Scholar
  26. 26.
    J.P. Ortega, Proc. Roy. Soc. Edinburgh Sect. A 133, 665 (2003) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    S. Wiggins, Global Bifurcations and Chaos: Analytical Methods (Applied Mathematical Sciences, Springer-Verlag, New York, 1988) Google Scholar
  28. 28.
    R. Barrio, F. Blesa, Chaos Solitons Fractals 41, 560 (2009) ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    K.R. Meyer, G.R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-body Problem (Applied Mathematical Sciences, Springer-Verlag, New York, 1992) Google Scholar
  30. 30.
    M. Lara, J.P. Salas, Chaos 14, 763 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    M. Iñarrea, V. Lanchares, J.F. Palacián, A.I. Pascual, J.P. Salas, P. Yanguas, Phys. Rev. A 76, 052903 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    F. Blesa, J. Mahecha, J.P. Salas, M. Iñarrea, Phys. Lett. A 374, 191 (2009) ADSCrossRefMATHGoogle Scholar
  33. 33.
    M. Iñarrea, J.F. Palacián, A.I. Pascual, J.P. Salas, J. Chem. Phys. 135, 014110 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    F.J. Muñoz-Almaraz, E. Freire, J. Galán, E. Doedel, A. Vanderbauwhede, Physica D 181, 1 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    W.H. Wing, Prog. Quantum Electron. 8, 181 (1984) ADSCrossRefGoogle Scholar
  36. 36.
    P. Meystre, Atom Optics (Springer-Verlag, New York, 2001) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Química, Área de Física AplicadaUniversidad de La RiojaLogroñoSpain

Personalised recommendations