Angular momentum conservation in measurements on spin Bose-Einstein condensates

Regular Article


We discuss a thought experiment where two operators, Alice and Bob, perform transverse spin measurements on a quantum system; this system is initially in a double Fock spin state, which extends over a large distance in space so that the two operators are far away from each other. Standard quantum mechanics predicts that, when Alice makes a few measurements, a large transverse component of the spin angular momentum may appear in Bob’s laboratory. A paradox then arises since local angular momentum conservation seems to be violated. It has been suggested that this angular momentum may be provided by the interaction with the measurement apparatuses. We show that this solution of the paradox is not appropriate, so that another explanation must be sought. The general question is the retroaction of a quantum system onto a measurement apparatus. For instance, when the measured system is entangled with another quantum system, can its reaction on a measurement apparatus be completely changed? Is angular momentum conserved only on average over several measurements, but not during one realization of the experiment?


Quantum Information 


  1. 1.
    M. Jammer, The Philosophy of Quantum Mechanics (Wiley, 1974), Sect. 5.1Google Scholar
  2. 2.
    E.P. Wigner, Z. Phys. 133, 101 (1952)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    H. Araki, M. Yanase, Phys. Rev. 120, 622 (1960)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    M. Ozawa, Phys. Rev. Lett. 67, 1956 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    L. Loveridge, P. Busch, Eur. Phys. J. D 62, 297 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Aharonov, D. Rohrlich, Quantum Paradoxes (Wiley VCH, 2005), Sect. 11.4Google Scholar
  7. 7.
    A.J. Leggett, F. Sols, Found. Phys. 21, 353 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, 2001 and 2008)Google Scholar
  9. 9.
    F. Laloë, Eur. Phys. J. D 33, 87 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    G.S. Paraoanu, R. Healey, Int. J. Theor. Phys. 51, 1783 (2012)CrossRefMATHGoogle Scholar
  11. 11.
    F. Laloë, in Beyond the Quantum, edited by T.M. Nieuwenhuizen et al. (World Scientific, 2007)Google Scholar
  12. 12.
    F. Laloë, W.J. Mullin, Phys. Rev. Lett. 99, 150401 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    F. Laloë, W.J. Mullin, Phys. Rev. A 77, 022108 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    W.J. Mullin, R. Krotkov, F. Laloë, Phys. Rev. A 74, 023610 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P. Nozières, in Bose-Einstein Condensation, edited by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, 1995)Google Scholar
  16. 16.
    M.H. Wheeler, K.M. Mertes. J.D. Erwin, D.S. Hall, Phys. Rev. Lett. 93, 170402 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A. Shimony, Bell’s Theorem, in The Stanford Encyclopedia of Philosophy,
  18. 18.
    M.P. Seevinck, arXiv:1010.3714Google Scholar
  19. 19.
    A. Shimony, in Philosophical Consequences of Quantum Theory, edited by J.T. Cushing, E. McMullin (University of Notre Dame Press, 1989), pp. 25–37Google Scholar
  20. 20.
    N. Gisin, Science 326, 1357 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LKB (ENS, CNRS et UPMC)ParisFrance
  2. 2.Department of PhysicsUniversity of MassachusettsAmherstUSA

Personalised recommendations