A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

  • Aravindhan Ganesan
  • Michael J. Brunger
  • Feng Wang
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

Keywords

Alkyl Side Chain Vibrational Circular Dichroism Aliphatic Amino Acid Chiral Carbon Vibrational Wavenumbers 

Supplementary material

10053_2013_656_MOESM1_ESM.pdf (369 kb)
Supplementary material, approximately 369 KB.

References

  1. 1.
    S.G. Stepanian, I.D. Reva, E.D. Radchenko, L. Adamowicz, J. Phys. Chem. A 102, 4623 (1998)CrossRefGoogle Scholar
  2. 2.
    S.G. Stepanian, I.D. Reva, E.D. Radchenko, L. Adamowicz, J. Phys. Chem. A 103, 4404 (1999)CrossRefGoogle Scholar
  3. 3.
    A.G. Császár, J. Phys. Chem. 100, 3541 (1996)CrossRefGoogle Scholar
  4. 4.
    S. Dokmaisrijan, V.S. Lee, P. Nimmanpipug, J. Mol. Struct. 953, 28 (2010)CrossRefGoogle Scholar
  5. 5.
    L. Gontrani, B. Mennucci, J. Tomasi, J. Mol. Struct. 500, 113 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Pecul, Chem. Phys. Lett. 427, 166 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    I. Powis, J. Phys. Chem. A 104, 878 (2000)CrossRefGoogle Scholar
  8. 8.
    C.T. Falzon, F. Wang, J. Chem. Phys. 123, 214307 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    C.T. Falzon, F. Wang, W. Pang, J. Phys. Chem. B 110, 9713 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Ganesan, F. Wang, J. Chem. Phys. 131, 044321 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ganesan, F. Wang, C. Falzon, J. Comput. Chem. 32, 525 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Ganesan, F. Wang, M. Brunger, K. Prince, J. Synchrotron Radiat. 18, 733 (2011)CrossRefGoogle Scholar
  13. 13.
    S.G. Stepanian, I.D. Reva, E.D. Radchenko, M.T.S. Rosado, M.L.T.S. Duarte, R. Fausto, L. Adamowicz, J. Phys. Chem. A 102, 1041 (1998)CrossRefGoogle Scholar
  14. 14.
    B. Hernández, F. Pflüger, N. Derbel, J. De Coninck, M. Ghomi, J. Phys. Chem. B 114, 1077 (2009)CrossRefGoogle Scholar
  15. 15.
    J.M. Bakker, L.M. Aleese, G. Meijer, G. von Helden, Phys. Rev. Lett. 91, 203003 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    I. Compagnon, J. Oomens, G. Meijer, G. von Helden, J. Am. Chem. Soc. 128, 3592 (2006)CrossRefGoogle Scholar
  17. 17.
    J. Oomens, N. Polfer, D.T. Moore, L. van der Meer, A.G. Marshall, J.R. Eyler, G. Meijer, G. von Helden, PCCP 7, 1345 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    G. von Helden, I. Compagnon, M.N. Blom, M. Frankowski, U. Erlekam, J. Oomens, B. Brauer, R.B. Gerber, G. Meijer, PCCP 10, 1248 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Ji, R. Santamaria, I.L. Garzòn, J. Phys. Chem. A 114, 3591 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Zhu, X. Zhu, Q. Fan, X. Wan, Spectrochim. Acta A 78, 1187 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    B. Andreas, Prog. Biophys. Mol. Biol. 74, 141 (2000)CrossRefGoogle Scholar
  22. 22.
    L.D. Barron, A.R. Gargaro, L. Hecht, P.L. Polavarapu, Spectrochim. Acta 47, 1001 (1991)CrossRefGoogle Scholar
  23. 23.
    D. Chakraborty, S. Manogaran, Chem. Phys. Lett. 294, 56 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    P. Danecek, J. Kapitan, V. Baumruk, L. Bednarova, V. Kopecky, P. Bour, J. Chem. Phys. 126, 224513 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    A.R. Gargaro, L.D. Barron, L. Hecht, J. Raman Spectrosc. 24, 91 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    S. Kumar, A. Kumar Rai, S.B. Rai, D.K. Rai, A.N. Singh, V.B. Singh, J. Mol. Struct. 791, 23 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kumar, A.K. Rai, V.B. Singh, S.B. Rai, Spectrochim. Acta A 61, 2741 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    J. Oomens, J.D. Steill, B. Redlich, J. Am. Chem. Soc. 131, 4310 (2009)CrossRefGoogle Scholar
  29. 29.
    E. Tajkhorshid, K.J. Jalkanen, S. Suhai, J. Phys. Chem. B 102, 5899 (1998)CrossRefGoogle Scholar
  30. 30.
    G.-S. Yu, T.B. Freedman, L.A. Nafie, Z. Deng, P.L. Polavarapu, J. Phys. Chem. 99, 835 (1995)CrossRefGoogle Scholar
  31. 31.
    L.D. Barron, A.D. Buckingham, Chem. Phys. Lett. 492, 199 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    L.A. Nafie, Annu. Rev. Phys. Chem. 48, 357 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    R.K. Dukor, L.A. Nafie, in Encyclopedia of Analytical Chemistry (John Wiley & Sons, Ltd, 2006)Google Scholar
  34. 34.
    L.A. Nafie, M.R. Oboodi, T.B. Freedman, J. Am. Chem. Soc. 105, 7449 (1983)CrossRefGoogle Scholar
  35. 35.
    M. Pecul, Chirality 21, E98 (2009)CrossRefGoogle Scholar
  36. 36.
    B. Nieto-Ortega, J. Casado, E.W. Blanch, J.T. Lòpez Navarrete, A.R. Quesada, F.J. Ramìrez, J. Phys. Chem. A 115, 2752 (2011)CrossRefGoogle Scholar
  37. 37.
    E. Deplazes, W. van Bronswijk, F. Zhu, L. Barron, S. Ma, L. Nafie, K. Jalkanen, Theor. Chem. Acc. 119, 155 (2008)CrossRefGoogle Scholar
  38. 38.
    M.R. Oboodi, B.B. Lal, D.A. Young, T.B. Freedman, L.A. Nafie, J. Am. Chem. Soc. 107, 1547 (1985)CrossRefGoogle Scholar
  39. 39.
    M. Diem, J. Am. Chem. Soc. 110, 6967 (1988)CrossRefGoogle Scholar
  40. 40.
    P. Zhang, P.L. Polavarapu, Appl. Spectrosc. 60, 378 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    M. Diem, P.L. Polavarapu, M. Oboodi, L.A. Nafie, J. Am. Chem. Soc. 104, 3329 (1982)CrossRefGoogle Scholar
  42. 42.
    M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669 (2003)CrossRefGoogle Scholar
  43. 43.
    J.R. Cheeseman, M.J. Frisch, F.J. Devlin, P.J. Stephens, Chem. Phys. Lett. 252, 211 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    P.J. Stephens, J. Phys. Chem. 89, 748 (1985)CrossRefGoogle Scholar
  45. 45.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    E.E. Zvereva, A.R. Shagidullin, S.A. Katsyuba, J. Phys. Chem. A 115, 63 (2010)CrossRefGoogle Scholar
  48. 48.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  49. 49.
    A.G. Császár, J. Mol. Struct. 346, 141 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    B. Herrera, O. Dolgounitcheva, V.G. Zakrzewski, A. Toro-Labbé, J.V. Ortiz, J. Phys. Chem. A 108, 11703 (2004)CrossRefGoogle Scholar
  51. 51.
    C.H. Hu, M. Shen, H.F. Schaefer, J. Am. Chem. Soc. 115, 2923 (1993)CrossRefGoogle Scholar
  52. 52.
    J.H. Jensen, M.S. Gordon, J. Am. Chem. Soc. 113, 7917 (1991)CrossRefGoogle Scholar
  53. 53.
    A. Lesarri, E.J. Cocinero, J.C. López, J.L. Alonso, Angew. Chem. Int. Ed. 43, 605 (2004)CrossRefGoogle Scholar
  54. 54.
    A. Lesarri, R. Sánchez, E.J. Cocinero, J.C. López, J.L. Alonso, J. Am. Chem. Soc. 127, 12952 (2005)CrossRefGoogle Scholar
  55. 55.
    S. Shirazian, S. Gronert, J. Mol. Struct. 397, 107 (1997)CrossRefGoogle Scholar
  56. 56.
    E.A. Stroev, Biochemistry (Mir Publishers, Moscow, 1989)Google Scholar
  57. 57.
    F. Tortonda, J. Pascual-Ahuir, E. Silla, I. Tuñón, F. Ramírez, J. Chem. Phys. 109, 592 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    E.J. Cocinero, A. Lesarri, J.-U. Grabow, J.C. López, J.L. Alonso, Chem. Phys. Chem. 8, 599 (2007)CrossRefGoogle Scholar
  59. 59.
    K. Iijima, K. Tanaka, S. Onuma, J. Mol. Struct. 246, 257 (1991)ADSCrossRefGoogle Scholar
  60. 60.
    J. Sun, D. Bousquet, H. Forbert, D. Marx, J. Chem. Phys. 133, 114508 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    A.H. Lowrey, V. Kalasinsky, R.W. Williams, Struct. Chem. 4, 289 (1993)CrossRefGoogle Scholar
  62. 62.
    A.P. Scott, L. Radom, J. Phys. Chem. 100, 16502 (1996)CrossRefGoogle Scholar
  63. 63.
    P.D. Godfrey, S. Firth, L.D. Hatherley, R.D. Brown, A.P. Pierlot, J. Am. Chem. Soc. 115, 9687 (1993)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aravindhan Ganesan
    • 1
  • Michael J. Brunger
    • 2
  • Feng Wang
    • 1
  1. 1.eChemistry Laboratory, Faculty of Life and Social SciencesSwinburne University of TechnologyVictoriaAustralia
  2. 2.School of Chemical and Physical SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations