Collision of two atoms in laser radiation field with formation of Feshbach resonances

  • Emil A. Gazazyan
  • Alfred D. Gazazyan
  • Vigen O. Chaltykyan
Regular Article

Abstract

Based on the simplest two-channel model we theoretically consider laser induced elastic and inelastic collision of two atoms with formation of Feshbach resonance. In cases of one- and two-photon resonances of laser radiation with two discrete vibrational molecular levels, we show that Feshbach resonances appear at interaction of external magnetic field with dressed states formed via Autler-Townes effect. We also study the laser-induced inelastic collision and its influence on the considered processes. In case of two-photon resonance between discrete vibrational molecular states the Feshbach resonances arise under action of magnetic field via Autler-Townes effect, while the laser-induced transition into the elastic-channel continuum is in this case absent. We obtain the cross-sections of elastic and inelastic scattering and show that quenching of resonance occurs under certain conditions. The obtained results can be employed in new studies of collisions of atoms, e.g., of alkali metal atoms, and for interpretation of new experiments in BECs.

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    H. Feshbach, Ann. Phys. 19, 287 (1962)MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    E. Timmermans, P. Tommasini, M. Hussein, A. Kerman, Phys. Rep. 315, 199 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Duine, H.T.C. Stoof, Phys. Rep. 396, 115 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Ch. Chin, R. Grimn, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Inouye, M.R. Andrews, J. Stenger, H.J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Hutson, New J. Phys. 9, 152 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    K. Gorel, T. Kohler, S.A. Gardiner, E. Tiesinga, P.S. Julienne, J. Phys. B 37, 3457 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Moerdijk, B.J. Verhaar, A. Axelsson, Phys. Rev. A 51, 4852 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    B. Marcelis, B. Varhaar, S. Kokkelmans, Phys. Rev. Lett. 100, 153201 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B. Marcelis, E.G.M. van Kampen, B.J. Varhaar, S.J.J.M.F. Kokkelmans, Phys. Rev. A 70, 012701 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    T. Kohler, K. Gorel, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    P. Pellegrini, M. Gacesa, R. Côte, Phys. Rev. Lett. 101, 053201 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    J. Deiglamyr et al., New J. Phys. 11, 055034 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    K. Winkler, F. Lang, G. Thalhammer, P.V.D. Straten, R. Grimm, J. Hecker Denschlag, Phys. Rev. Lett. 98, 043201 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    S.J. Kokkelmans, H.M.J. Visser, D.J. Verhaar, Phys. Rev. A 63, 031601(R) (2001)ADSCrossRefGoogle Scholar
  18. 18.
    A.C. Han, E.A. Shapiro, M. Shapiro, J. Phys. B 44, 154018 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    E. Kuznetsova, M. Gacesa, P. Pellegrini, S.F. Yelin, R. Côte, New J. Phys. 11, 055028 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    R. Côte, A. Dalgarno, Y. Sun, R.G. Hulet, Phys. Rev. Lett. 74, 3581 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    S.E. Harris, Phys. Rev. A 66, 010701(R) (2002)ADSCrossRefGoogle Scholar
  22. 22.
    P.O. Fedichev, Yu. Kagan, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 77, 2913 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    M. Yheis, G. Thalhemmer, K. Winkler, M. Hellwing, G. Ruff, R. Greemm, J. Hecker Densihlag, Phys. Rev. Lett. 93, 123001 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Y.B. Band, P.S. Julienne, Phys. Rev. A 51, R317 (1995)Google Scholar
  25. 25.
    J.L. Bohn, P.S. Julienne, Phys. Rev. A 56, 1486 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    J.L. Bohn, P.S. Julienne, Phys. Rev. A 54, R4637 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    J.L. Bohn, P.S. Julienne, Phys. Rev. A 60, 414 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    U. Fano, Phys. Rev. 124, 1866 (1961)ADSCrossRefMATHGoogle Scholar
  29. 29.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952)Google Scholar
  30. 30.
    A.E. Kazakov, V.P. Makarov, M.V. Fedorov, Sov. Phys. J. Exp. Theor. Phys. 43, 20 (1976)ADSGoogle Scholar
  31. 31.
    A.D. Gazazyan, M.A. Sarkissyan, Phys. Lett. A 78, 133 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    P.L. Knight, M.A. Lauder, B.J. Dalton, Phys. Rep. 190, 1 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    A.D. Gazazyan, R.G. Unanyan, Sov. Phys. J. Exp. Theor. Phys. 58, 903 (1983)Google Scholar
  34. 34.
    A.D. Gazazyan, M.L. Ter-Mikaelyan, R.G. Unanyan, Laser Phys. 5, 199 (1995)Google Scholar
  35. 35.
    J.C. Phillips, Phys. Rev. Lett. 12, 447 (1964)ADSCrossRefGoogle Scholar
  36. 36.
    K.P. Jain, Phys. Rev. A 139, 544 (1965)ADSCrossRefGoogle Scholar
  37. 37.
    A. Shibatani, Y. Toyozawa, J. Phys. Soc. Jpn 25, 335 (1968)ADSCrossRefGoogle Scholar
  38. 38.
    A.D. Gazazyan, E.A. Gazazyan, Laser Phys. 16, 1696 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    A.D. Gazazyan, E.A. Gazazyan, A.G. Margaryan, Eur. Phys. J. D 53, 243 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    L.C. Davis, L.A. Feldkamp, Phys. Rev. B 15, 2961 (1977)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    H. Messy, Negative Ions (Cambridge University Press, Cambridge, 1976)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emil A. Gazazyan
    • 1
  • Alfred D. Gazazyan
    • 1
  • Vigen O. Chaltykyan
    • 1
  1. 1.Institute for Physical ResearchArmenian National Academy of SciencesAshtarak-2Armenia

Personalised recommendations