Advertisement

Room temperature synthesis of rutile titania nanoparticles: a thermodynamic perspective

  • M. B. Rajendra Prasad
  • H. M. Pathan
Regular Article

Abstract

Films of rutile titania nanoparticles with nearly spherical morphology were prepared using chemical solution deposition at room temperature. The results of the study show that the phase, size and morphology of the particle and the compactness of the film can apparently be controlled by controlling the surface hydrogenation of the particle. The results were very much in agreement with the predictions made by the established thermodynamic model of Barnard and Zapol. The present study opens new avenues for the synthesis of phase specific nanoparticles of titania with different morphologies at room temperature by varying the levels of surface hydrogenation.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    C.P. Poole, F.J. Owens, in Introduction to Nanotechnology (John Wiley & Sons, 2006), Chaps. 4 and 13 Google Scholar
  2. 2.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    O. Regan, M. Gratzel, Nature 353, 737 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993) CrossRefGoogle Scholar
  5. 5.
    M. Gratzel, Nature 414, 338 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    M. Koelsch, S. Cassaignon, C.T.T. Minh, J.F. Guillemoles, J.P. Jolivet, Thin Solid Films 312, 403 (2002) Google Scholar
  7. 7.
    H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Lévy, J. Appl. Phys. 75, 2042 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    A. Navrotsky, O.J. Kleppa, J. Am. Ceram. Soc. 50, 626 (1967)CrossRefGoogle Scholar
  9. 9.
    T. Mitsuhashi, O.J. Kleppa, J. Am. Ceram. Soc. 62, 356 (1979)CrossRefGoogle Scholar
  10. 10.
    H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000) CrossRefGoogle Scholar
  11. 11.
    A.A. Gribb, J.F. Banfield, Am. Mineral. 82, 717 (1997)Google Scholar
  12. 12.
    T.Y. Ke, C.W. Peng, C.Y. Lee, H.T. Chiu, H.S. Sheu, Cryst. Eng. Commun. 11, 1691 (2009) CrossRefGoogle Scholar
  13. 13.
    H.G. Roy, DOI: 10.12966/ram.09.02.2013
  14. 14.
    S.T. Aruna, S. Tirosh, A. Zaban, J. Mater. Chem. 10, 2388 (2000) CrossRefGoogle Scholar
  15. 15.
    W.Y. Wang, L.Z. Zhang, K.J. Deng, Z.Y. Chen, Z.G. Zou, J. Phys. Chem. C 111, 2709 (2007) CrossRefGoogle Scholar
  16. 16.
    H. Cheng, J. Ma, J.Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  17. 17.
    K. Yanagisawa, J. Ovenstone, J. Phys. Chem. B 103, 7781 (1999) CrossRefGoogle Scholar
  18. 18.
    H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000) CrossRefGoogle Scholar
  19. 19.
    C.H. Yu, N. Caiulo, C.C.H. Lo, K. Tam, S.C. Tsang, Adv. Mater. 18, 2312 (2006) CrossRefGoogle Scholar
  20. 20.
    D. Guin, S.V. Manorama, Mater. Lett. 62, 3139 (2008) CrossRefGoogle Scholar
  21. 21.
    L. Li, L. Chen, R. Qihe, G. Li, Appl. Phys. Lett. 89, 134102 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    B. Fei, Z.X. Deng, J.H. Xin, Y.H. Zhang, G. Pang, Nanotechnology 17, 1927 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    W. Wang, B.H. Gu, L.Y. Liang, W.A. Hamilton, D.J. Wesolowski, J. Phys. Chem. B 108, 14789 (2004) CrossRefGoogle Scholar
  24. 24.
    Y. Li, J.L. Liu, Z.J. Jia, Mater. Lett. 60, 1753 (2006) CrossRefGoogle Scholar
  25. 25.
    A.S. Barnard, P. Zapol, Phys. Rev. B 70, 235403 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    C.D. Lokhande, B.O. Park, H.S. Park, K.D. Jung, O.S. Joo, Ultramicroscopy 105, 267 (2005) CrossRefGoogle Scholar
  27. 27.
    A.M. More, T.P. Gujar, J.L. Gunjakar, C.D. Lokhande, O.S. Joo, Appl. Surf. Sci. 255, 2682 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    A.S. Barnard, P. Zapol, J. Phys. Chem. B 108, 18435 (2004) CrossRefGoogle Scholar
  29. 29.
    D. Nicholls, in Complexes and First-row Transition Elements (Macmillan, New York, 1974), Chap. 11Google Scholar
  30. 30.
    M.P. Finnegan, H. Zhang, J.F. Banfield, J. Phys. Chem. C 111, 1962 (2007) CrossRefGoogle Scholar
  31. 31.
    A.S. Barnard, L.A. Curtiss, Nano Lett. 7, 1261 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    M. Yoon, M. Seo, C. Jeong, H.J. Jang, K.S. Jeon, Chem. Mater. 17, 6069 (2005) CrossRefGoogle Scholar
  33. 33.
    M. Zhou, L. Zhang, J. Dong, Q. Qin, J. Am. Chem. Soc. 122, 10680 (2000) CrossRefGoogle Scholar
  34. 34.
    T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, J. Mol. Struct. 700, 17 (2004)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073 (1998)CrossRefGoogle Scholar
  36. 36.
    W. Chen, Z. Wang, Z. Lin, L. Lin, J. Appl. Phys. 82, 3411 (1997) Google Scholar
  37. 37.
    H.Z. Zhang, B. Gilbert, F. Huang, J.F. Banfield, Nature 424, 1025 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    B. Gilbert, H.Z. Zhang, F. Huang, J.F. Banfield, Y. Ren, D. Hascal, J.C. Lang, G. Srajer, A. Jurgensen, G.A. Waychunas, J. Chem. Phys. 120, 11785 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Advanced Physics Laboratory, Department of PhysicsUniversity of PunePuneIndia
  2. 2.National Defence Academy, KhadakwaslaPuneIndia
  3. 3.Centre for Nanoscience and Quantum systemsUniversity of PunePuneIndia

Personalised recommendations