Advertisement

Interaction for the trapped fermi gas from a unitary transformation of the exact two-body spectrum

  • Jimmy Rotureau
Regular Article

Abstract

We study systems of few two-component fermions interacting in a Harmonic Oscillator trap. The fermion-fermion interaction is generated in a finite basis with a unitary transformation of the exact two-body spectrum given by the Busch formula. The few-body Schrödinger equation is solved with the formalism of the No-Core Shell Model. We present results for a system of three fermions interacting at unitarity as well as for finite values of the S-wave scattering length a 2 and effective range r 2. Unitary systems with four and five fermions are also considered. We show that the many-body energies obtained in this approach are in excellent agreement with exact solutions for the three-body problem, and results obtained by other methods in the other cases.

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M. Köhl, H. Moritz, T. Stöferle, K. Gunter, T. Esslinger, Phys. Rev. Lett. 94, 080403 (2005)CrossRefGoogle Scholar
  3. 3.
    T. Stöferle, H. Moritz, K. Günter, M. Köhl, T. Esslinger, Phys. Rev. Lett. 96, 030401 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    E. Haller et al., Science 325, 1224 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    G. Zürn et al., Phys. Rev. Lett. 108, 075303 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Olshanii, Phys. Rev. Lett. 81, 938 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    E. Fermi, Ric. Sci. 7, 13 (1936)Google Scholar
  8. 8.
    G. Breit, Phys. Rev. 71, 215 (1947)ADSMATHCrossRefGoogle Scholar
  9. 9.
    K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    T. Busch, B.-G. Englert, K. Rzążewski, M. Wilkens, Found. Phys. 28, 549 (1998)CrossRefGoogle Scholar
  11. 11.
    S. Jonsell, Few-Body Syst. 31, 255 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    D. Blume, C.H. Greene, Phys. Rev. A 65, 043613 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Block, M. Holthaus, Phys. Rev. A 65, 052102 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    E.L. Bolda, E. Tiesinga, P.S. Julienne, Phys. Rev. A 66, 013403 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    A. Bhattacharyya, T. Papenbrock, Phys. Rev. A 74, R041602 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    C. Ospelkaus et al., Phys. Rev. Lett. 97, 120402 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. C 62, 054311 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    P. Navrátil, S. Quaglioni, I. Stetcu, B.R. Barrett, J. Phys. G 36, 083101 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. C 61, 054001 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    S. Fujii, R. Okamoto, K. Suzuki, Phys. Rev. C 69, 034328 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    S.Y. Chang, G.F. Bertsch, Phys. Rev. A 76, 021603(R) (2007)ADSGoogle Scholar
  24. 24.
    D. Blume, J. von Stecher, C.H. Greene, Phys. Rev. Lett. 99, 233201 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    N.T. Zinner, K. Mølmer, C. Ozen, D.J. Dean, K. Langanke, Phys. Rev. A 80, 013613 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    I. Stetcu, B.R. Barrett, U. van Kolck, J.P. Vary, Phys. Rev. A 76, 063613 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    I. Stetcu, J. Rotureau, B.R. Barrett, U. van Kolck, Ann. Phys. 325, 1644 (2010)ADSMATHCrossRefGoogle Scholar
  28. 28.
    J. Rotureau, I. Stetcu, B.R. Barrett, M.C. Birse, U. van Kolck, Phys. Rev. A 82, 032711 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J. Rotureau, I. Stetcu, B.R. Barrett, U. van Kolck, Phys. Rev. C 85, 034003 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    U. van Kolck, Nucl. Phys. A 645, 273 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    H.W. Grießhammer, Nucl. Phys. A 760, 110 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    H.W. Grießhammer, Few-Body Syst. 38, 67 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    T. Barford, M.C. Birse, J. Phys. A 38, 697 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  36. 36.
    R.F. Mohr, R.J. Furnstahl, R.J. Perry, K.G. Wilson, H.-W. Hammer, Ann. Phys. 321, 225 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    L. Platter, D.R. Phillips, Few-Body Syst. 40, 35 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    H.-W. Hammer, L. Platter, Eur. Phys. J. A 32, 113 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    J. Kirscher, H.W. Grießhammer, D. Shukla, H.M. Hofmann, Eur. Phys. J. A 44, 239 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Alhassid, G.F. Bertsch, L. Fang, Phys. Rev. Lett. 100, 230401 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz, I.A. Stegun (Dover Publications, New York, 1972)Google Scholar
  44. 44.
    A.F. Lisetskiy, B.R. Barrett, M.K.G. Kruse, P. Navrátil, I. Stetcu, J.P. Vary, Phys. Rev. C 78, 044302 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    P. Navrátil, G.P. Kamuntavičius, B.R. Barrett, Phys. Rev. C 61, 044001 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    J. von Stecher, C.H. Greene, Phys. Rev. A 80, 022504 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    D. Blume, K.M. Daily, C.R. Physique 12, 86 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    P. Maris, J.P. Vary, P. Navrátil, W.E. Ormand, H. Nam, D.J. Dean, Phys. Rev. Lett. 106, 202502 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    C. Forssén, R. Roth, P. Navrátil, J. Phys. G 40, 055105 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    M. Girardeau, J. Math. Phys. 1, 516 (1960)MathSciNetADSMATHCrossRefGoogle Scholar
  51. 51.
    S. Zöllner, H.D. Meyer, P. Schmelcher, Phys. Rev. A 74, 063611 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    F. Deuretzbacher, K. Bongs, K. Sengstock, D. Pfannkuche, Phys. Rev. A 75, 013614 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    I. Brouzos, P. Schmelcher, Phys. Rev. Lett. 108, 045301 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    I. Brouzos, P. Schmelcher, Phys. Rev. A 87, 023605 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    I. Brouzos, F.K. Diakonos, P. Schmelcher, J. Phys. B 46, 045001 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    E.J. Lindgren, J. Rotureau, C. Forssén, A.G. Volosniev, N.T. Zinner, arXiv:1304.2992Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fundamental PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations