Generation of bright atomic and molecular solitons in hybrid atom-molecular Bose-Einstein condensates coupled through raman photoassociation

Regular Article


We have explored the feasibility of designing atomic and molecular bright solitons in a hybrid atom-molecular BEC (Bose Einstein Condensate) system of 87Rb coupled through Raman Photoassociation. It is found that the atomic and molecular waves when allowed to evolve in a spherical one-dimensional trap, initially oscillate with time and assume solitonic nature as bright solitons with progress in time. After the trap is switched off, atomic and molecular waves propagate retaining its solitonic nature and the final amplitude and nature of the bright solitons depend on the time of evolution within the trap. For this study we have used system parameters which are experimentally realizable. We have imposed random perturbation (5%) on the initial atomic and molecular wavefunctions, which are the solution of time independent coupled equation (without decay) and studied the evolution of atomic and molecular solitons with trap on and off condition. A small regular or large irregular oscillation in the amplitude of atomic solitons during evolution of perturbed matter waves are imposed depending on the system parameters. However broad molecular solitons with slowly decaying amplitude are generated which oscillate symmetrically around the centre of the trap. It is found that the stability and the shape of the generated atomic and molecular bright solitons can be controlled by varying the system parameters e.g. initial number of atoms, decay rates of the excited molecule and the frequency of the trap. Since the boson-boson interaction and the atom-molecular coupling strength depend on the total number of atoms, one can control the interplay between boson-boson interaction (due to s-wave scattering) and the atom-molecular coupling (through Raman Photoassociation) by varying the total number of atoms. It is found that with the increase in trap frequency generation of atomic and molecular solitons in atom-molecular coupled system is feasible if the strength of atom-molecular coupling and two-photon detuning is increased. The shape and the stability of the bright solitonic waves depend significantly on the strength of induced decay from the excited molecular state to the two-atom continuum or to the bound vibrational levels of the ground state. Stable flat-top atomic and molecular matter wave pulse can be generated from this atom-molecular coupled system by increasing the decay rates of the excited molecules.


Cold Matter and Quantum Gas 


  1. 1.
    J.M. Gerton, D. Strekalov, I. Prodan, R.G. Hulet, Nature 408, 692 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    R. Wynar, R.S. Freeland, D.J. Han, C. Ryu, D.J. Heinzen, Science 287, 1016 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    S. Jochim et al., Science 302, 2101 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    K. Winkler et al., Phys. Rev. Lett. 98, 043201 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J.G. Danzl et al., Science 321, 1062 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    E. Timmermans et al., Phys. Rev. Lett. 83, 2691 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    E. Timmermans et al., Phys. Rep. 315, 199 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Heinzen, R. Wynar, P.D. Drummond, K.V. Kheruntsyan, Phys. Rev. Lett. 84, 5029 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Hope, M.K. Olsen, Phys. Rev. Lett. 86, 3220 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    F.D. de Oliveira, M.K. Olsen, Opt. Commun. 234, 235 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Manakov, Sov. Phys. J. Exp. Theor. Phys. 38, 248 (1874)ADSGoogle Scholar
  12. 12.
    J. Javanainen, M. Mackie, Phys. Rev. A 58, R789 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    J. Javanainen, M. Mackie, Phys. Rev. A 59, R3186 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    S. Durr et al., Phys. Rev. Lett. 92, 020406 (2004)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    P.D. Drummond et al., Phys. Rev. A 65, 063619 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Nature 417, 529 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    M. Gupta, K.R. Dastidar, Phys. Rev. A 80, 043618 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Gupta, K.R. Dastidar, Phys. Rev. A 81, 033610 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Gupta, K.R. Dastidar, Phys. Rev. A 81, 063631 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Cornish, S.T. Thompson, C.E. Wieman, Phys. Rev. Lett. 96, 170401 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    M.S. Bigelow, Q.-H. Park, R.W. Boyd, Phys. Rev. E 66, 046631 (2002)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    U.A. Khawaja, H.T.C. Stoof, R.G. Hulet, K.E. Strecker, G.B. Partridge, Phys. Rev. Lett. 89, 200404 (2002)CrossRefGoogle Scholar
  23. 23.
    K.E. Strecker, G.B. Partrdge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    L. Khaykovich et al., Science 296, 1200 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Denschlag et al., Science 287, 97 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    G. Theocharis et al., Phys. Rev. A 67, 063610 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    S. Burger et al., Phys. Rev. Lett 83, 5198 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    S.K. Adhikari, J. Low Temp. Phys. 143, 267 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Shunji Tsuchiya, Franco Dalfovo, Lev Pitaevskii, Phys. Rev. A 77, 045601 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    A.D. Jackson et al., Phys. Rev. A 58, 2417 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    L.D. Carr, J. Brand, Phys. Rev. Lett. 92, 040401 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    P.D. Drummond et al., Phys. Rev. Lett. 81, 3055 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    B. Oles, K. Sacha, J. Phys. B 40, 1103 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    U. Al Khawaja, H.T.C. Stoof, New J. Phys. 13, 085003 (2011)CrossRefGoogle Scholar
  35. 35.
    T.G. Vaughan, K.V. Kheruntsyan, P.D. Drummond, Phys. Rev. A 70, 063611 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    J. Benedict et al., Phys. Rev. A 65, 013609 (2001)CrossRefGoogle Scholar
  37. 37.
    S.L. Cornish et al., Phys. Rev. Lett. 85, 1795 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    M. Theis et al., Phys. Rev. Lett. 93, 123001 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    N. Bogoliubov, J. Phys. 11, 23 (1947)Google Scholar
  40. 40.
    M. Gupta, K.R. Dastidar, J. Phys. B: At. Mol. Opt. Phys. 41, 195302 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    M. Gupta, K.R. Dastidar, J. Phys.: Conf. Ser. 80, 012038 (2007)ADSGoogle Scholar
  42. 42.
    W.B. Cardoso, A.T. Avelar, D. Bazeia, Phys. Rev. E 86, 027601 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Indian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Raman Research InstituteBangaloreIndia

Personalised recommendations