Theoretical prediction of novel ultrafine nanowires formed by Si12C12 cage-like clusters

Regular Article
  • 125 Downloads

Abstract

Using density functional theory calculations, we predict that novel SiC ultrafine nanowires can be produced via the coalescence of stable Si12C12 clusters. For the isolated Si12C12 clusters, we find that the cage-like structure with a distinct segregation between Si and C atoms is energetically more favourable than the fullerene-like structure with alternating Si-C bonds. Via the coalescence of Si12C12 clusters, three novel stable nanowires have been characterised. The band structure reveals that these nanowires are semiconductors with narrow gap, indicating that they may be used as infrared detectors and thermoelectrics.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    P. Melinon, B. Masenelli, F. Tournus, A. Perez, Nat. Mater. 6, 480 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Ray, M.N. Huda, J. Comput. Theor. Nanosci. 3, 315 (2006) Google Scholar
  3. 3.
    J.Y. Fan, X.L. Wu, P.K. Chu, Prog. Mater. Sci. 51, 983 (2006) CrossRefGoogle Scholar
  4. 4.
    K. Zekentes, K. Rogdakis, J. Phys. D 44, 133001 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    M.J. Kumar, M.A. Reed, G. Amaratunga, G.M. Cohen, D.B. Janes, C.M. Lieber, M. Meyyappan, L.-E. Wernersson, K.L. Wang, R.S. Chau, T.I. Kamins, M. Lundstrom, B. Yu, C. Zhou, IEEE Trans. Electron Devices 55, 2813 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, S. Iijima, Science 285, 1719 (1999) CrossRefGoogle Scholar
  7. 7.
    H. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Nature 375, 769 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    X.H. Sun, C.P. Li, W.K. Wong, N.B. Wong, C.S. Lee, S.T. Lee, B.K. Teo, J. Am. Chem. Soc. 124, 14464 (2002) CrossRefGoogle Scholar
  9. 9.
    S.N. Khanna, P. Jena, Phys. Rev. Lett. 69, 1664 (1992) ADSCrossRefGoogle Scholar
  10. 10.
    M. Qian, A.C. Reber, A. Ugrinov, N.K. Chaki, S. Mandal, H.M. Saavedra, S.N. Khanna, A. Sen, P.S. Weiss, ACS Nano 4, 235 (2010) CrossRefGoogle Scholar
  11. 11.
    S.A. Claridge, A.W. Castleman Jr., S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, ACS Nano 3, 244 (2009) CrossRefGoogle Scholar
  12. 12.
    A.W. Castleman Jr., S.N. Khanna, J. Phys. Chem. C 113, 2664 (2009) CrossRefGoogle Scholar
  13. 13.
    S.M. Woodley, C.R.A. Catlow, Nat. Mater. 7, 937 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    M. Matsubara, C. Massobrio, J. Phys. Chem. A 109, 4415 (2005) CrossRefGoogle Scholar
  15. 15.
    M. Matsubara, J. Kortus, J.C. Parlebas, C. Massobrio, Phys. Rev. Lett. 96, 155502 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    M.N. Huda, A.K. Ray, Chem. Phys. Lett. 457, 124 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    R. Wang, D. Zhang, C. Liu, Chem. Phys. Lett. 411, 333 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Patrick, X. Dong, T.C. Allison, E. Blaisten-Barojas, J. Chem. Phys. 130, 244704 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    P. Pochet, L. Genovese, D. Caliste, I. Rousseau, S. Goedecker, T. Deutsch, Phys. Rev. B 82, 035431 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    X. Wang, B. Wang, G. Chen, J. Zhao, Chem. Phys. 355, 31 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    J. Hou, B. Song, J. Chem. Phys. 128, 154304 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    B. Song, Y. Yong, J. Hou, P. He, Eur. Phys. J. D 59, 399 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    M.B. Watkins, S.A. Shevlin, A.A. Sokol, B. Slater, C.R.A. Catlow, S.M. Woodley, Phys. Chem. Chem. Phys. 11, 3186 (2009) CrossRefGoogle Scholar
  24. 24.
    J. Li, Y. Xia, M. Zhao, X. Liu, C. Song, L. Li, F. Li, J. Chem. Phys. 128, 154719 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    J. Li, Y. Xia, M. Zhao, X. Liu, C. Song, L. Li, F. Li, B. Huang, Chem. Phys. Lett. 442, 384 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    L.I. Ovsyannikova, V.V. Pokropivny, V.L. Bekenev, Phys. Solid State 51, 2199 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    M.N. Huda, L. Kleinman, A.K. Ray, J. Comput. Theor. Nanosci. 4, 739 (2007) Google Scholar
  28. 28.
    B. Delley, J. Chem. Phys. 92, 508 (1990) ADSCrossRefGoogle Scholar
  29. 29.
    B. Delley, J. Chem. Phys. 113, 7756 (2000) ADSGoogle Scholar
  30. 30.
    A.D. Becke, J. Chem. Phys. 88, 2547 (1988) ADSGoogle Scholar
  31. 31.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSGoogle Scholar
  32. 32.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetGoogle Scholar
  33. 33.
    Y.L. Yong, B. Song, J. Li, P. He, J. Phys. B 44, 135101 (2011) ADSGoogle Scholar
  34. 34.
    S. Nosé, Mol. Phys. 52, 255 (1984) ADSGoogle Scholar
  35. 35.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985) ADSGoogle Scholar
  36. 36.
    R. Scipioni, M. Matsubara, E. Ruiz, C. Massobrio, M. Boero, Chem. Phys. Lett. 510, 14 (2011) ADSGoogle Scholar
  37. 37.
    C. Massobrio, D.M. Djimbi, M. Matsubara, R. Scipioni, M. Boero, Chem. Phys. Lett. 556, 163 (2013) ADSGoogle Scholar
  38. 38.
    Y.L. Yong, B. Song, P. He, Phys. Chem. Chem. Phys. 13, 16182 (2011) Google Scholar
  39. 39.
    Y.L. Yong, B. Song, P. He, J. Phys. Chem. C 115, 6455 (2011) Google Scholar
  40. 40.
    K.M. Alam, A.K. Ray, Nanotechnology 18, 495706 (2007) ADSGoogle Scholar
  41. 41.
    A. Rogalski, Prog. Quantum Electron. 27, 59 (2003) ADSGoogle Scholar
  42. 42.
    P.S. Riseborough, Adv. Phys. 49, 257 (2000) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials and Department of Physics, Zhejiang UniversityHangzhouP.R. China
  2. 2.College of Physics and Engineering, Henan University of Science and TechnologyLuoyangP.R. China

Personalised recommendations