Photodissociation of IF2CCOF clusters by resonant IR radiation

  • Valentin M. Apatin
  • Valery N. Lokhman
  • Danil D. Ogurok
  • Denis G. Poydashev
  • Evgeny A. Ryabov
Regular Article


Results of studies on the dissociation of (IF2CCOF) n clusters upon resonant excitation of IF2CCOF molecules by pulsed (~10-7 s) IR laser radiation are reported. Two different channels of the cluster excitation, via vibrations of C–F (~9 μm) and C = O (~5.3 μm) bonds in chromophore molecules, were used. It has been shown that, in both cases, the number of clusterized molecules decreases exponentially with increasing IR radiation fluence Φ IR . A dissociation lag has been revealed; i.e. the dissociation of (IF2CCOF) n clusters has been found to occur only at values of Φ IR that exceed a certain threshold value, Φ IR  > Δ Φ th . The efficiency of cluster dissociation has been shown to depend only on the amount of absorbed energy and not to depend on the used channel of excitation. A phenomenological model of the cluster IR dissociation has been developed, which ensure a clear interpretation of experimental results. In particular, the energy required to evaporate the molecule and the mean size of the clusters under study have been estimated. It is concluded that, on a time scale ~10-7 s, the process of the IR dissociation of (IF2CCOF) n clusters can be considered as a quasi-stationary process of successive evaporation of molecules in the course of cluster heating by resonant IR radiation.


Clusters and Nanostructures 


  1. 1.
    H. Pauly, Atom, Molecule, and Cluster beams II. Cluster Beams, Fast and Slow Beams, Accessory Equipment and Applications, in Springer Series on Atomic, Optical, and Plasma Physics (Springer, New York, 2000), Vol. 32Google Scholar
  2. 2.
    Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms, in Springer Series in Chemical Physics, edited by H. Haberland (Springer, Berlin, 1994), Vol. 52Google Scholar
  3. 3.
    U. Buck, in Advances in Atomic, Molecular, and Optical Physics, edited by B. Bederson, H. Walther, Elsevier (Amsterdam, 1995), Vol. 35, p. 121Google Scholar
  4. 4.
    A.W. Castleman Jr., K.H. Bowen Jr., J. Phys. Chem. 100, 12911 (1996)CrossRefGoogle Scholar
  5. 5.
    G.N. Makarov, Phys. Usp. 49, 117 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G.N. Makarov, Phys. Usp. 51, 319 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R.E. Miller, J. Phys. Chem. 90, 3301 (1986)CrossRefGoogle Scholar
  8. 8.
    B. Simard, S. Denommee, D. Rayner, D. van Heijnsbergen, G. Meijer, G. van Helden, Chem. Phys. Lett. 357, 195 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R.E. Miller, Science 240, 447 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    U. Buck, J. Phys. Chem. 98, 5190 (1994)CrossRefGoogle Scholar
  11. 11.
    E.J. Bohac, M.D. Marshall, R.E. Miller, J. Chem. Phys. 96, 6681 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Nesbitt, Annu. Rev. Phys. Chem. 45, 367 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    U. Buck, J. Phys. Chem. 92, 1023 (1988)CrossRefGoogle Scholar
  14. 14.
    V.N. Lokhman, D.D. Ogurok, E.A. Ryabov, Chem. Phys. 333, 85 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    V.N. Lokhman, D.D. Ogurok, E.A. Ryabov, JETP 108, 727 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    K.V. Vidma, A.V. Baklanov, E.B. Khvorostov, V.N. Ischenko, S.A. Kochubei, A.T.J.B. Eppink, D.A. Chestakov, D.H. Parker, J. Chem. Phys. 122, 204301 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    V.M. Apatin, V.N. Lokhman, D.D. Ogurok, D.G. Poydashev, E.A. Ryabov, JETP 112, 1 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    V.M. Apatin, V.O. Kompanets, V.N. Lokhman, N.-D.D. Ogurok, D.G. Poydashev, E.A. Ryabov, S.V. Chekalin, JETP Lett. 94, 570 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S.V. Chekalin, V.O. Kompanets, V.M. Apatin, D.D. Ogurok, V.N. Lokhman, D.G. Poydashev, E.A. Ryabov, EPJ Web Conf. 41, 02030 (2013)CrossRefGoogle Scholar
  20. 20.
    S.V. Chekalin, V.O. Kompanets, V.B. Laptev, A.A. Makarov, S.V. Pigul’sky, E.A. Ryabov, in The XVII Symposium on High Resolution Molecular Spectroscopy, Book of Abstracts (Zelenogorsk, St. Petersburg region, 2012), p. 79Google Scholar
  21. 21.
    V.V. Badikov, V.B. Laptev, V.L. Panyutin, E.A. Ryabov, G.S. Shevyrdyaeva, O.B. Shcherbina, Sov. J. Quant. Electron. 22, 722 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    O.V. Rattigan, D.E. Shallcross, R.A. Cox, J. Chem. Soc. Faraday Trans. 93, 2839 (1997)CrossRefGoogle Scholar
  23. 23.
    A.A. Vostrikov, D.Y. Dubov, JETP 98, 197 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    J. Gspann, Z. Phys. D 3, 143 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    C.E. Klots, Z. Phys. D 21, 335 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    G.N. Makarov, Phys. Usp. 54, 351 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valentin M. Apatin
    • 1
  • Valery N. Lokhman
    • 1
  • Danil D. Ogurok
    • 1
  • Denis G. Poydashev
    • 1
    • 2
  • Evgeny A. Ryabov
    • 1
  1. 1.Institute for Spectroscopy, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscow regionRussia

Personalised recommendations