Advertisement

Chemical order and magnetic properties in small Mx−2N2 nanoalloys

Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

A systematic analysis of the chemical order, structure stability and magnetic behaviour of small transition metal binary nanoalloys is performed employing spin-polarised ab-initio simulations. The doping of icosahedral geometries at 13 and 19 atoms of magnetic materials with two impurities both magnetic (Fe, Co, Ni, Pt) and non-magnetic (Ag, Cu) is considered. In CoFe, the most favourable substitutional sites are those which maximise the total magnetic moment of the system: Fe dopants tend to occupy surface sites while Co atoms stay in the inner. For all the other nanoalloys, the doping sites respect a chemical order that leads to a surface energy minimization often followed by a depression of the total magnetization. The ferromagnetic arrangement is always the energetically most favourable order apart from the Ag-doped case where the anti-ferromagnetic alignment is almost degenerate to the ferromagnetic phase.

Keywords

CoFe Substitutional Site Total Magnetization Total Magnetization Chemical Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Barnard, Rep. Prog. Phys. 73, 086502 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008) CrossRefGoogle Scholar
  3. 3.
    U. Maitra, B. Das, N. Kumar, A. Sundaresan, C. Rao, Chem. Phys. Chem. 12, 2322 (2011) CrossRefGoogle Scholar
  4. 4.
    K.N.K. Kowlgi, G.J.M. Koper, S.J. Picken, U. Lafont, L. Zhang, B. Norder, Langmuir 27, 7783 (2011) CrossRefGoogle Scholar
  5. 5.
    A.W. Castleman. Jr, J. Phys. Chem. Lett. 2, 1062 (2011)CrossRefGoogle Scholar
  6. 6.
    C.Q. Sun, Nanoscale 2, 1930 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M. Zhang, R. Fournier, Phys. Rev. A 79, 043203 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    G. Papaefthymiou, Nano Today 4, 438 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Bader, Rev. Mod. Phys. 78, 1 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J. Alonso, Chem. Rev. 100, 637 (2000) CrossRefGoogle Scholar
  11. 11.
    J.H. Mokkath, G.M. Pastor, Phys. Rev. B 85, 054407 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    M.E. Gruner, P. Entel, Int. J. Quantum Chem. 112, 277 (2012) CrossRefGoogle Scholar
  13. 13.
    A. Chen, P. Holt-Hindle, Chem. Rev. 110, 3767 (2010) CrossRefGoogle Scholar
  14. 14.
    F. Aguilera-Granja, A. Vega, Phys. Rev. B 79, 144423 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    F. Aguilera-Granja, R.C. Longo, L.J. Gallego, A. Vega, J. Chem. Phys. 132, 184507 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    B. Stahl et al., Phys. Rev. B 67, 014422 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    L. Favre et al., Phys. Rev. B 74, 014439 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    J. Garitaonandia et al., Nano Lett. 8, 661 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    S.V. Barabash, R.V. Chepulskii, V. Blum, A. Zunger, Phys. Rev. B 80, 220201R (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A. Guimaraes, Principles of nanomagnetism (Springer, Berlin, 2009)Google Scholar
  21. 21.
    R. Wang, O. Dmitrieva, M. Farle, G. Dumpich, H. Ye, H. Poppa, R. Kilaas, C. Kisielowski, Phys. Rev. Lett. 100, 017205 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    A. Dannenberg, M.E. Gruner, A. Hucht, P. Entel, Phys. Rev. B 80, 245438 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    M.E. Gruner, J. Phys. D: Appl. Phys. 43, 474008 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    I. Robinson, S. Zacchini, L.D. Tung, S. Maenosono, N.T.K. Thanh, Chem. Mater. 21, 3021 (2009) CrossRefGoogle Scholar
  25. 25.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009) CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999) ADSCrossRefGoogle Scholar
  28. 28.
    C. Di Paola, F. Baletto, in Proceedings for CMMSE XI (2011), Vol. 2, p. 451Google Scholar
  29. 29.
    P. Blonski, J. Hafner, J. Phys.: Condens. Matter 23, 136001 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    M. Piotrkowski, P. Piquini, J.L.F.D. Silva, Phys. Rev. B 81 (2010)Google Scholar
  31. 31.
    F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet, J. Chem. Phys. 116, 3856 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    P.O. Löwdin, J. Chem. Phys. 18, 365 (1950)ADSCrossRefGoogle Scholar
  33. 33.
    T. Sourmail, Prog. Mater. Sci. 50, 816 (2005)CrossRefGoogle Scholar
  34. 34.
    D. Carta, G. Navarra, A. Falqui, Z. Kónya, A. Corrias, RSC Adv. 2, 7886 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsKing’s College of LondonLondonUK

Personalised recommendations