Advertisement

Ground state structures, electronic and optical properties of medium-sized Nan + (n = 9, 15, 21, 26, 31, 36, 41, 50 and 59) clusters from ab initio genetic algorithm

Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

Employing genetic algorithm incorporated with density functional theory calculations we determined the lowest-energy structures of cationic Na n + clusters (n = 9, 15, 21, 26, 31, 36, 41, 50 and 59). We revealed a transition of growth pattern from “polyicosahedral” sequence to the Mackay icosahedral motif at around n = 40. Based on the ground-state structures the size dependent electronic properties of Na n + clusters including the binding energies, HOMO-LUMO gaps, electron density of states and photoabsorption spectra were discussed. As cluster size increases, the HOMO-LUMO gap of Na n + cluster gradually reduces and converges to metallic behavior of bulk crystal rapidly. The photoabsorption spectra of Na n + clusters from our calculations agree with experimental data rather well, confirming the reliability of our theoretical approaches.

Keywords

Density Functional Theory Lower Unoccupied Molecular Orbital Density Functional Theory Calculation Ground State Structure Jellium Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Clusters of Atoms and Molecules I, edited by H. Haberland (Springer-Verlag, Berlin, 1995)Google Scholar
  4. 4.
    Nanoclusters: a Bridge Across Disciplines, edited by P. Jena, A.W. Castleman Jr. (Elsevier, Amsterdan, 2010)Google Scholar
  5. 5.
    W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    K. Clemenger, Phys. Rev. B 32, 1359 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    M.M. Kappes, M. Schär, U. Röthlisberger, C. Yeretzian, E. Schumacher, Chem. Phys. Lett. 143, 251 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    H. Göhlich, T. Lange, T. Bergmann, U. Näher, T.P. Martin, Chem. Phys. Lett. 187, 67 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    G. Tikhonov, V. Kasperovich, K. Wong, V.V. Kresin, Phys. Rev. B 64, 063202 (2001)Google Scholar
  11. 11.
    J. Bowlan, A. Liang, W.A. de Heer, Phys. Rev. Lett. 106, 043401 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    K. Selby, V. Kresin, J. Masui, M. Vollmer, W.A. de Heer, A. Scheidemann, W.D. Knight, Phys. Rev. B 43, 4565 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    J. Borggreen, P. Chowdhury, N. Kebaili, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, J. Pedersen, H.D. Rasmussen, Phys. Rev. B 48, 17507 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    T. Reiners, C. Ellert, M. Schmidt, H. Haberland, Phys. Rev. Lett. 74, 1558 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    M. Schmidt, H. Haberland, Eur. Phys. J. D 6, 109 (1999)ADSGoogle Scholar
  16. 16.
    O. Kostko, N. Morgner, M. Astruc Hoffmann, B. von Issendorff, Eur. Phys. J. D 34, 133 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    O. Kostko, B. Huber, M. Moseler, B. von Issendorff, Phys. Rev. Lett. 98, 043401 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M. Schmidt, R. Kusche, B. von Issendorff, H. Haberland, Nature 393, 238 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmüller, B. von Issendorff, H. Haberland, Phys. Rev. Lett. 86, 1191 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    M. Schmidt, J. Donges, Th. Hippler, H. Haberland, Phys. Rev. Lett. 90, 103401 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. von Issendorff, Phys. Rev. Lett. 94, 035701 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    S. Zamith, P. Labastie, F. Chirot, J.M. L’Hermite, J. Chem. Phys. 133, 154501 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    W. Ekardt, Z. Penzar, Phys. Rev. B 43, 1322 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    V.O. Nesterenko, W. Kleinig, V.V. Gudkov, N.L. Iudice, J. Kvasil, Phys. Rev. A 56, 607 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Ghazi, S. De, D.G. Kanhere, S. Goedecker, J. Phys.: Condens. Matter 23, 405303 (2011)CrossRefGoogle Scholar
  26. 26.
    S.K. Lai, P.J. Hsu, K.L. Wu, W.K. Liu, M. Iwamatsu, J. Chem. Phys. 117, 10715 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    E.G. Noya, J.P.K. Doye, D.J. Wales, A. Aguado, Eur. Phys. J. D 43, 57 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    F. Calvo, S. Tran, S.A. Blundell, C. Guet, F. Spiegelmann, Phys. Rev. B 62, 10394 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    R. Poteau, F. Spiegelmann, J. Chem. Phys. 98, 6540 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    S. Kümmel, M. Brack, P.G. Reinhard, Phys. Rev. B 58, R1774 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    S. Kümmel, M. Brack, P.G. Reinhard, Phys. Rev. B 62, 7602 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    U. Röthlisberger, W. Andreoni, J. Chem. Phys. 94, 8129 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    L. Kronik, I. Vasiliev, M. Jain, J.R. Chelikowsky, J. Chem. Phys. 115, 4322 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    I.A. Solov’yov, A.V. Solov’yov, W. Greiner, Phys. Rev. A 65, 053203 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    S.M. Ghazi, M.S. Lee, D.G. Kanhere, J. Chem. Phys. 128, 104701 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A. Aguado, J. Phys. Chem. C 115, 13180 (2011)CrossRefGoogle Scholar
  37. 37.
    K. Manninen, H. Häkkinen, M. Manninen, Phys. Rev. A 70, 023203 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    M.S. Lee, D.G. Kanhere, Phys. Rev. B 75, 125427 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    S. Zorriasatein, M.S. Lee, D.G. Kanhere, Phys. Rev. B 76, 165414 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M. Itoh, V. Kumar, T. Adschiri, Y. Kawazoe, J. Chem. Phys. 131, 174510 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Aguado, O. Kostko, J. Chem. Phys. 134, 163404 (2011)CrossRefGoogle Scholar
  42. 42.
    S.M. Ghazi, S. Zorriasatein, D.G. Kanhere, J. Phys. Chem. A 113, 2659 (2009)CrossRefGoogle Scholar
  43. 43.
    L.W. Sai, L.L. Tang, J.J. Zhao, J. Wang, V. Kumar, J. Chem. Phys. 135, 184305 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    R.L. Johnston, Dalton Trans. 22, 4193 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    J.J. Zhao, R.H. Xie, J. Comput. Theor. Nanosci. 1, 117 (2004)CrossRefGoogle Scholar
  46. 46.
    B. Delley, J. Chem. Phys. 92, 508 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    K.P. Huber, G. Herzberg, Molecular spectra and molecular structure, in Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), Vol. 4Google Scholar
  50. 50.
    L. Bewig, U. Buck, Ch. Mehlmann, M. Winter, J. Chem. Phys. 100, 2765 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    C. Kittle, Introduction to Solid State Physics, edited by S. Johnson, 8th edn. (Wiley, New York, 2005)Google Scholar
  52. 52.
    V. Bonacic-Koutecky, P. Fantucci, J. Koutecky, Chem. Rev. 91, 1035 (1991)CrossRefGoogle Scholar
  53. 53.
    A. Aguado, J. Phys. Chem. C 116, 6841 (2012)CrossRefGoogle Scholar
  54. 54.
    J.A. Northby, J. Chem. Phys. 87, 6166 (1987)ADSCrossRefGoogle Scholar
  55. 55.
    Z. Guo, B. Lu, X. Jiang, J.J. Zhao, R.H. Xie, Physica E 42, 1755 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaoming Huang
    • 1
    • 2
  • Linwei Sai
    • 1
    • 2
  • Xue Jiang
    • 1
    • 2
  • Jijun Zhao
    • 1
    • 2
  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianP.R. China
  2. 2.College of Advanced Science and TechnologyDalian University of TechnologyDalianP.R. China

Personalised recommendations