Advertisement

Line broadening of excimers bound to the surface of 4He clusters investigated by comparison with corona discharge excitation spectra

Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

A new method for assessing the site-specific emission from electronically excited helium droplets is presented. The fluorescence features of helium droplets show sharp rotationally resolved lines indicating desorption of excimers and emission far outside the droplets as well as blue-shifted and strongly broadened features due to emission of excimers confined in cavities within the droplets. A third feature is identified: slightly broadened rotational lines that we attribute to emission from excimers bound to the droplet surface. The line broadening arises from collisions with the helium gas within the surface layer of the helium droplets. These conditions are simulated using a high pressure gas cell in which helium gas is electronically excited using a corona discharge. Rotational line broadening of similar magnitude to that of large droplets (N ∼ 107 atoms) is observed for gas pressures at about 5 bar and 80 K, corresponding to a number density of 4.52 × 10-4 Å-3. We conclude that the excimers are located within a shell separated by 6 to 7 Å from the radius where the density has dropped to 50% of its centre value. Helium droplets that are smaller (N ∼ 104 atoms) exhibit rotational lines that are less broadened, which we attribute to the superposition of features originating from desorbed and from surface-bound excimers. A fit of the linewidths reveals that around 50% of the excimers are bound to the surface of the smaller droplets.

Keywords

Corona Discharge Helium Atom Large Droplet Droplet Surface Full Width Half Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Stockton, J. Keto, W. Fitzsimmons, Phys. Rev. A 5, 372 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    J. Keto, F. Soley, M. Stockton, W. Fitzsimmons, Phys. Rev. A 10, 872 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    W.S. Dennis, J.E. Durbin, W.A. Fitzsimmons, O. Heybey, G.K. Walters, Phys. Rev. Lett. 23, 1083 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Li, N. Bonifaci, A. Denat, V. Atrazhev, IEEE Trans. Dielectr. Electr. Insul. 13, 624 (2006)CrossRefGoogle Scholar
  5. 5.
    Z. Li, N. Bonifaci, F. Aitken, A. Denat, K. von Haeften, V. Atrazhev, V.A. Shakhathov, IEEE Trans. Dielectr. Electr. Insul. 16, 742 (2009)CrossRefGoogle Scholar
  6. 6.
    Z. Li, N. Bonifaci, F. Aitken, A. Denat, K. von Haeften, V. Atrazhev, V.A. Shakhathov, Eur. Phys. J. Appl. Phys. 47, 22821 (2009)CrossRefGoogle Scholar
  7. 7.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Möller, Phys. Rev. Lett. 88, 233401 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Möller, J. Phys. B 38, S373 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    K. von Haeften, A.R.B. de Castro, M. Joppien, L. Moussavizadeh, R. von Pietrowski, T. Möller, Phys. Rev. Lett. 78, 4371 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    H. Buchenau, J.P. Toennies, J. Chem. Phys. 95, 8134 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    J. Harms, J.P. Toennies, F. Dalfovo, Phys. Rev. B 58, 3341 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Möller, Phys. Rev. Lett. 87, 153403 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    F. Aitken, Z. Li, N. Bonifaci, A. Denat, K. von Haeften, Phys. Chem. Chem. Phys. 13, 719 (2011)CrossRefGoogle Scholar
  14. 14.
    K. von Haeften, T. Laarmann, H. Wabnitz, T. Möller, K. Fink, J. Phys. Chem. A 25, 7316 (2011)CrossRefGoogle Scholar
  15. 15.
    V.R. Pandharipande, J.G. Zabolitzky, S.C. Pieper, R.B. Wiringa, U. Helmbrecht, Phys. Rev. Lett. 50, 1676 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    O. Kornilov, O. Bunermann, D.J. Haxton, S.R. Leone, D.M. Neumark, O. Gessner, J. Phys. Chem. A 115, 7891 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Guillermo Mendoza-Luna
    • 1
  • Mark Watkins
    • 1
  • Klaus von Haeften
    • 1
  • Nelly Bonifaci
    • 2
  • Frederic Aitken
    • 2
  1. 1.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  2. 2.G2Elab, CNRS et Université Joseph FourierGrenobleFrance

Personalised recommendations