Effects of spin-orbital coupling on the propagation of whistler waves in the magnetized plasma

  • Mariya Iv. Trukhanova
Regular Article


We study the spin-orbital corrections to the propagation of the whistler waves in a astrophysical quantum magnetoplasma composed by mobile ions and electrons. We use a fluid formalism to include weakly relativistic corrections due to the spin-orbital interactions and spin correction due to the magnetization energy of electrons and to the Bohm potential. We explicate a method of quantum magnetohydrodynamics (QMHD) for the study of the evolution of whistlers. The presented method is based upon the Schrödinger equation. Fundamental QMHD equations for electron-ion plasma were derived from the many-particle microscopic Schrödinger equation. We have applied the renormalization group method to obtain more general dynamical equations for the slowly varying amplitudes of whistler waves which involve the spin correction due to the Bohm potential and to magnetization energy of electrons, but also the spin-orbital corrections. We have found that the spin-orbital contributions to the whistler mode depends on the frequency due to its spin and must meaningful for the external magnetic field is below the quantum critical magnetic field strength.


Plasma Physics 


  1. 1.
    C.T. Russell, T.L. Zhang, M. Delva, W. Magnes, R.J. Strangeway, H.Y. Wei, Nature 450, 661 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Helliwell, Whistlers and Related Ionospheric Phenomena (Standford University Press, Standford, 1965)Google Scholar
  3. 3.
    M. Scholer, D. Burgess, Phys. Plasmas 14, 072103 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    D. Shaikh, arXiv:0803.3265Google Scholar
  5. 5.
    A.P. Misra, G. Brodin, M. Marklund, P.K. Shukla, Phys. Plasmas 17, 122306 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T.F. Bell, O. Buneman, Phys. Rev. 133, A1300 (1964)ADSCrossRefGoogle Scholar
  7. 7.
    R.F. Lutomirski, R.N. Sudan, Phys. Rev. 147, 156 (1966)ADSCrossRefGoogle Scholar
  8. 8.
    A.P. Misra, G. Brodin, M. Marklund, P.K. Shukla, Phys. Plasmas 76, 857 (2010)CrossRefGoogle Scholar
  9. 9.
    S. De Martino, M. Falanga, S.I. Tzenov, Phys. Plasmas 12, 072308 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A.P. Misra, G. Brodin, M. Marklund, P.K. Shukla, Phys. Rev. E 82, 056406 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Grap, V. Meden, S. Andergassen, Phys. Rev. B 86, 035143 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    M. Stefan, G. Brodin, arXiv:1209.4213Google Scholar
  13. 13.
    F.A. Asenjo, arXiv:1010.0058Google Scholar
  14. 14.
    G. Rowlands, M.A. Allen, J. Plasma Phys. 73, 543 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    L.S. Kuz’menkov, S.G. Maximov, V.V. Fedoseev, Theor. Math. Phys. 126, 110 (2001)MATHCrossRefGoogle Scholar
  16. 16.
    M.I. Trukhanova, Int. J. Mod. Phys. B 26, 1250004 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    F.A. Asenjo et al., New J. Phys. 14, 073042 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A.Yu. Ivanov, P.A. Andreev, L.S. Kuzmenkov, arXiv:1209.6124Google Scholar
  19. 19.
    P.A. Andreev, L.S. Kuzmenkov, M.I. Trukhanova, Phys. Rev. B. 84, 245401 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    L.Y. Chen, N. Goldenfeld, Y. Oono, Phys. Rev. E 54, 376 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1998)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.M.V.Lomonosov Moscow State University, Faculty of PhysicsMoscowRussia

Personalised recommendations