Advertisement

Structural and electronic properties of AuIr nanoalloys

  • Laura M. Jiménez-Díaz
  • Luis A. Pérez
Regular Article
Part of the following topical collections:
  1. Topical issue: ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters

Abstract

The lowest-energy structures of binary (AuIr) n , (AuIr3) s , and (Au3Ir) s clusters, with n = 2−20, and s = 5, modeled by the many-body Gupta potential, were obtained by using a genetic-symbiotic algorithm. These structures were further relaxed within the density functional theory to obtain the most stable structures for each composition. Segregation is observed in all the AuIr clusters, where the Ir atoms occupy the cluster core and the Au atoms are situated on the cluster surface. On the other hand, there is experimental evidence that the (AuIr) n nanoalloys could have an enhanced catalytic activity for CO oxidation. In order to study this phenomenon, we also performed first-principles density functional calculations of the CO and O2 adsorption on these bimetallic nanoclusters, considering three different compositions and a fixed cluster size of 20 atoms.

Keywords

Adsorption Energy Cluster Core Stable Isomer Bimetallic Cluster Bimetallic Nanoclusters 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Jellinek, E.B. Krissinel, Theory of Atomic and Molecular Clusters, edited by J. Jellinek (Springer, Berlin, 1999)Google Scholar
  2. 2.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)CrossRefGoogle Scholar
  3. 3.
    J.H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts and Applications (Wiley, New York, 1983)Google Scholar
  4. 4.
    M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal. 197, 113 (2001)CrossRefGoogle Scholar
  5. 5.
    T.V. Choudhary, D.W. Goodman, Top. Catal. 21, 25 (2002)CrossRefGoogle Scholar
  6. 6.
    M. Okumura, T. Akita, M. Haruta, X. Wang, O. Kajikawa, O. Okada, J. Appl. Catal. B 41, 43 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Akita, M. Okumura, K. Tanaka, S. Tsubota, M. Haruta, J. Electron Microsc. 52, 119 (2003)CrossRefGoogle Scholar
  8. 8.
    Z.-P. Liu, S.J. Jenkins, D.A. King, Phys. Rev. Lett. 93, 156102 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    A. Gómez-Cortés, G. Díaz, R. Zanella, H. Rodríguez, P. Santiago, J.M. Saniger, J. Phys. Chem. C 113, 9719 (2009)CrossRefGoogle Scholar
  10. 10.
    X. Bokhimi, R. Zanella, C. Angeles-Chavez, J. Phys. Chem. C 114, 14101 (2010)CrossRefGoogle Scholar
  11. 11.
    F. Cleri, V. Rosato, Phys Rev. B 48, 22 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    K. Michaelian, Chem. Phys. Lett. 293, 202 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    K. Michaelian, N. Rendón, I.L. Garzón, Phys. Rev. B 60, 2000 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    I.L. Garzón, M.R. Beltrán, G. González, I. Gutíerrez-González, K. Michaelian, J.A. Reyes-Nava, J.I. Rodríguez-Hernández, Eur. Phys. J. D 24, 105 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    E.M. Fernández, L.C. Balbás, L.A. Pérez, K. Michaelian, I.L. Garzón, Int. J. Mod. Phys. B 19, 2339 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    L.O. Paz-Borbón, A. Gupta, R.L. Johnston, J. Mater. Chem. 18, 4154 (2008)CrossRefGoogle Scholar
  18. 18.
    R. Ferrando, A. Fortunelli, R.L. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Radillo-Díaz, Y. Coronado, L.A. Pérez, I.L. Garzón, Eur. Phys. J. D 52, 127 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M.D. Morse, Chem. Rev. 86, 1049 (1986)CrossRefGoogle Scholar
  26. 26.
    J. Li, X. Li, H.-J. Zhai, L.-S. Wang, Science 299, 864 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto de Física, Universidad Nacional Autónoma de MéxicoMéxico, D. F.México

Personalised recommendations